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Executive Summary

This document is the second part of the Deliverable 3.1 and presents the advancements made in event
recognition and forecasting technology of the SPEEDD project, in order to reason about events and learn
event definitions over large amounts of data, as well as under situations of uncertainty.

SPEEDD develops a system for proactive event-driven decision-making. Decisions are triggered by
forecasting events — whether they correspond to problems or opportunities — instead of reacting to
them once they happen. The decisions are made in real-time and require on-the-fly processing of Big
Data, i.e., extremely large amounts of noisy data streaming from different geographical locations, as well
as historical data. The effectiveness of the SPEEDD project will be evaluated in two use cases. First,
proactive traffic management, aiming to forecast traffic congestions and thus to attenuate them. Sec-
ond, proactive credit card fraud management, aiming to significantly improve fraud detection accuracy,
without compromising efficiency, and forecast various types of fraudulent activity.

SPEEDD implements event recognition methods (also known as event pattern matching or event
pattern detection systems), in order to extract useful information, in the form of events, by processing
time-evolving data that comes from various sources (e.g., various types of sensor, network activity logs,
ATMs, transactions, etc.). The extracted information — recognised and/or forecasted events — can
be exploited by other systems or human experts, in order to monitor an environment and respond to
the occurrence of significant events. Event recognition methods employ rich representation that can
naturally and compactly represent events with complex relational structure, e.g., events that are related
to other events with temporal constraints. Unfortunately, uncertainty is an unavoidable aspect of real-
world event recognition applications. Consider for example, noisy or incomplete observations from
road sensors, as well as imperfect definitions of fraudulent activity. Under situations of uncertainty, the
performance of an event recognition system may be seriously compromised.

To address the above requirements, we combine probabilistic and logic-based modelling for repre-
senting and reasoning about events and their effects under uncertainty. Specifically, we take advantage
of the succinct, structured and declarative representation of the Event Calculus formalism, in order to
formally express events and their effects. To handle the uncertainty, we employ the state-of-the-art prob-
abilistic and relational framework of Markov Logic Networks. The combination of probabilistic and
logical modelling has also the advantage of expressing event definitions with well defined probabilistic
and logical schematics and thus, we can employ state-of-the-art probabilistic reasoning and machine
learning techniques.

Another important characteristic of the SPEEDD project, is that machine learning algorithms must
deal with large amounts of data that continuously evolves. As a result, the current knowledge base of
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event definitions may need to be refined or enhanced with new definitions. Therefore, the traditional
approach of non-incremental batch machine learning algorithms cannot be applied in SPEEDD. To ad-
dress this issue, we present our current advancements in incremental learning of event definitions from
large amounts of noise-free data. We are planning to extend the probabilistic modelling methods with
incremental event definition learning techniques.
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1

Introduction

1.1 History of the Document

Version Date Author Change Description

0.1 3/11/2014 Evangelos Michelioudakis (NCSR) Set up of the document
0.2 4/11/2014 All Deliverable Authors (NCSR) Structure of the document
0.3 10/11/2014 Anastasios Skarlatidis (NCSR) Content adjusted: Event Calculus and

MLN
0.4 17/11/2014 Evangelos Michelioudakis (NCSR) Content adjusted: Learning for MLN
0.5 24/11/2014 Nikos Katzouris (NCSR) Content adjusted: ILED
0.6 1/12/2014 Anastasios Skarlatidis (NCSR) Content adjusted
1.0 16/12/2014 Anastasios Skarlatidis (NCSR) Content adjusted in response to internal

review

1.2 Purpose and Scope of the Document

This document presents the progress of the SPEEDD project with respect to event recognition and fore-
casting under uncertainty, as well as the current advancements to probabilistic inference and machine
learning for event definitions. Furthermore, the presented work identifies the research directions that
will be pursued in the second year of the project.

The reader is expected to be familiar with Complex Event Processing, Artificial Intelligence and
Machine Learning techniques, as well as the general intent and concept of the SPEEDD project. The
target relationship is:

• SPEEDD researchers

• SPEEDD audit
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SPEEDD emphasises to scalable event recognition, forecasting and machine learning of event def-
initions for Big Data, under situations where uncertainty holds. This document presents the current
advancements and discusses the scientific and technological issues that are being investigated in Work-
Package 3.

1.3 Relationship with Other Documents

This document is related to project deliverable D6.1 “The Architecture Design of the SPEEDD pro-
totype” that presents the on-line (including event recognition and forecasting) and off-line (machine
learning) architecture of the SPEEDD prototype. Furthermore, deliverables D7.1 and D8.1 outline the
requirements and the characteristics of the “Proactive Credit Card Fraud Management” and “Proactive
Traffic Management” project use cases, respectively.

1.4 Terminology Alignment

Table 1.1 shows the terminology alignment between the two parts of the Deliverable 3.1.

D3.1, part 1 (IBM) D3.1, part 2 (NCSR)
Raw Event Simple, Derived Event (SDE)
Derived Event Composite Event (CE)
Situation

Table 1.1: Terminology alignment between the two parts of the Deliverable 3.1.
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2

Machine Learning

2.1 Introduction

Fraud is an increasing business with increasing profits. Despite the advancing in terms of anti-fraud
technologies, the larger number of transactions and the improvement of fraudsters skills make the fraud
detection more challenging. Models for fraud detection have accompanied the evolution of both machine
learning theory and the fraud itself. The general tendency is for the use of supervised classification
(where the label differentiating genuine from fraudulent transactions is required) instead of unsupervised
approaches (where fraud detection follows the detection of outliers in the data).

Moreover, fraud is constantly changing and therefore, it is fundamental to use adaptive approaches to
follow this evolution. Advanced fraud detection machine learning techniques must also scale to handle
billions of payments in history, hundreds of payments per second, and millisecond-level latencies. The
number of transactions (and consequently, fraud) does not stop increasing and it is crucial to efficiently
process large amounts of information.

Transportation and traffic congestion are crucial aspects due to the rapid increase in the number
of vehicles. Traffic congestion results in excess delays, reduced safety, and increased environmental
pollution. Traffic analysis and forecasting, necessary for a good management of transportation systems,
require the analysis of massive data streams storming from various sensors, and this brings further
difficult tasks (mainly about real-time processing of big quantities, geographically distributed and noisy
data).

Both fraud detection and traffic management depend upon multiple layered and distributed informa-
tion systems. As time evolves these systems share, collect and process data in various structured and
unstructured digital formats. When such information is aggregated and correlated, it might become a
source of significant knowledge and represent activities of importance for an organisation. These pieces
of information, together with their temporal occurrence, can be represented by events.

An event is simply something that happens, or contemplated as happening (Luckham and Schulte,
2011). It provides the fundamental abstraction for representing time-evolving pieces of information. It
can be anything, such as a sensor signal, a financial transaction, as well as the result of some intelligent
processing, e.g., traffic flow measurements, etc. Regardless of the type of information that it carries, the
important property of an event is that it occurs for some period of time. Temporally, the occurrence of an
event may come in all sizes. It may happen instantaneously at some point in time or during some interval
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of time. Although an event as an entity represents a single piece of information, it might be related to
other events in various ways, e.g., temporally, spatially, causally, etc. Furthermore, related events tend to
occur in patterns, possibly mixed with other unrelated events. For example, in traffic management and
monitoring the events representing that some vehicles at the same time (temporal relation) are moving
slowly in close distance (spatial relations), may indicate the situation of an ongoing traffic congestion
(event pattern/definition).

Automatic event recognition and forecasting of significant events can be performed by systems that
employ Complex Event Processing (CEP) techniques. The aim of a CEP system is to recognise com-
posite events (CEs) of interest, based on input streams of time-stamped symbols, that is simple, derived
events (SDEs). A SDE is the result of applying a computational derivation process to some other event,
such as an event coming from a sensor (Luckham and Schulte, 2011). CEs are defined as relational
structures over other sub-events, either CEs or SDEs. Such CE definitions have the form of rules, usu-
ally expressed in a formal language, that capture the knowledge of domain experts. Due to the dynamic
nature of the aforementioned use cases, the CE definitions may require to be refined or it may need
to enhance the current knowledge base with new definitions. Manual creation of event definitions is a
tedious and cumbersome process and thus machine learning techniques are required.

Unfortunately, uncertainty is an unavoidable aspect of real-world event recognition applications and
it appears to be a consequence of several factors (Shet et al. 2007; Artikis et al. 2010a; Etzion and Niblett
2010, Section 11.2; Gal et al. 2011; Skarlatidis 2014). Under situations of uncertainty, the performance
of an event recognition system may be seriously compromised. Below we outline the types of uncertainty
that might appear in an event recognition application:

Erroneous input SDEs. Noisy observations result to streams containing erroneous input events. For
example, noise in the signal transmission may distort the observed values.

Incomplete SDE streams. Partial observations result in incomplete input streams. For example, a sen-
sor may fail for some period of time and stop sending information, interrupting the detection of a
SDE.

Imperfect event definitions. Low-level detection systems often cannot detect all SDEs required for CE
recognition, e.g. due to a limited number of sensing sources. Logical definitions of CEs, therefore,
have to be constructed upon a limited and often insufficient dictionary of SDEs. Furthermore,
when Machine Learning algorithms are used, similar patterns of SDEs may be inconsistently
annotated. As a result, CE definitions and background knowledge, either learnt from data or
derived by domain experts cannot strictly follow the annotation.

To overcome the issues of uncertainty and meet the aforementioned requirements, we are develop-
ing probabilistic inference and structure learning algorithms that operate under noisy environments and
Big Data. Specifically, we combine a well-defined temporal logic formalism with statistical relational
modelling and learning methods. Furthermore, we present the state-of-the-art approaches of supervised
structure learning methods that can learn definitions from data, as well as we present our current work
for scalable incremental learning of event definitions over large amounts of data.

2.2 Background

In order to develop such a mechanism for symbolic event recognition and learning under situations where
various forms of uncertainty hold, a framework is required that combines a logic-based representation
formalism (in our case the Event Calculus) with the field of Statistical Relational Learning.
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2.2.1 Event Calculus
The Event Calculus, originally introduced by Kowalski and Sergot (1986), is a many-sorted first-order
predicate calculus for reasoning about events and their effects. A number of different dialects have
been proposed using either logic programming or classical logic — see Shanahan (1999), Miller and
Shanahan (2002) and Mueller (2008) for surveys. Most Event Calculus dialects share the same ontology
and core domain-independent axioms. The ontology consists of time-points, events and fluents. The
underlying time model is often linear and may represent time-points as real or integer numbers. A fluent
is a property whose value may change over time. When an event occurs it may change the value of a
fluent. The core domain-independent axioms define whether a fluent holds or not at a specific time-point.
Moreover, the axioms incorporate the common sense law of inertia, according to which fluents persist
over time, unless they are affected by the occurrence of some event.

We base our model on an axiomatisation of a discrete version of the Event Calculus in first-order
logic (Skarlatidis, 2014). The discrete dialect of the Event Calculus has been proven to be logically
equivalent to the Event Calculus when the domain of time-points is limited to integers (Mueller, 2008).
For the task of event recognition, we focus only on the domain-independent axioms that determine the
influence of events to fluents and the inertia of fluents. Furthermore, similar to Artikis et al. (2010a),
predicates stating the initiation and termination of fluents are only defined in terms of fluents and time-
points. Table 2.1 summarises the main elements of the Event Calculus dialect. Variables (starting with
an upper-case letter) are assumed to be universally quantified unless otherwise indicated. Predicates,
functions and constants start with a lower-case letter.

Predicate Meaning

happensAt(E , T ) Event E occurs at time-point T

holdsAt(F , T ) Fluent F holds at time-point T

initiatedAt(F , T ) Fluent F is initiated at time-point T

terminatedAt(F , T ) Fluent F is terminated at time-point T

Table 2.1: The Event Calculus predicates.

The Event Calculus axioms that determine when a fluent holds are defined as follows:

holdsAt(F , T+1)⇐
initiatedAt(F , T )

(2.1)

holdsAt(F , T+1)⇐
holdsAt(F , T ) ∧
¬terminatedAt(F , T )

(2.2)

Axiom (2.1) defines that if a fluent F is initiated at time T , then it holds at the next time-point. Axiom
(2.2) specifies that a fluent continues to hold unless it is terminated.

The axioms that determine when a fluent does not hold are defined similarly:

¬holdsAt(F , T+1)⇐
terminatedAt(F , T )

(2.3)

¬holdsAt(F , T+1)⇐
¬holdsAt(F , T ) ∧
¬initiatedAt(F , T )

(2.4)
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According to Axiom (2.3), if a fluent F is terminated at time T then it does not hold at the next time-
point. Axiom (2.4) states that a fluent continues not to hold unless it is initiated.

The predicates happensAt, initiatedAt and terminatedAt are defined only in a domain-dependent
manner. happensAt expresses the input evidence, determining the occurrence of a simple, derived
events (SDE) at a specific time-point. The input stream of observed SDEs, therefore, is represented in
the Event Calculus as a narrative of ground happensAt predicates. initiatedAt and terminatedAt

specify under which circumstances a fluent — representing a composite event (CE) — is to be initi-
ated or terminated at a specific time-point. The domain-dependent rules of the Event Calculus, i.e., the
initiation and/or termination of some fluent1 over some domain-specific entities X and Y take the
following general form:

initiatedAt(fluent1(X ,Y ), T )⇐
happensAt(eventi(X ), T ) ∧ . . . ∧
holdsAt(fluentj(X ), T ) ∧ . . . ∧
Conditions[X ,Y ,T ]

terminatedAt(fluent1(X ,Y ), T )⇐
happensAt(eventk(X ), T ) ∧ . . . ∧
holdsAt(fluentl(X ), T ) ∧ . . . ∧
Conditions[X ,Y ,T ]

(2.5)

The domains of time-points, events and fluents, are represented by the finite sets T , E and F , respec-
tively. All individual entities that appear in a particular event recognition task, e.g., persons, objects,
etc., are represented by the constants of the finite set O. Conditions[X ,Y ,T ] in (2.5) is a set of
predicates, joined by conjunctions, that introduce further constraints in the definition, referring to time
T ∈ T and entities X, Y ∈ O. The predicates happensAt and holdsAt, as well as those appearing
in Conditions[X ,Y ,T ], may also be negated. The initiation and termination of a fluent can be de-
fined by more than one rule, each capturing a different initiation and termination case. With the use
of happensAt predicates, we can define a CE over SDE observations. Similarly, with the holdsAt

predicate we can define a CE over other CE, in order to create hierarchies of CE definitions. In both
initiatedAt and terminatedAt rules, the use of happensAt, holdsAt and Conditions[X ,Y ,T ]
is optional and varies according to the requirements of the target event recognition application.

2.2.2 Statistical Relational Learning
Similar to any pure logic-based formalism, the Event Calculus can compactly represent complex event
relations. A knowledge base of Event Calculus axioms and CE definitions is defined by a set of first-
order logic formulas. Each formula is composed of predicates that associate variables or constants,
representing SDEs, CEs, time-points, etc. One of the strong motivations for using such a relational
representation is its ability to directly express dependencies between related instances — e.g., events.
While this type of representation is highly expressive, it cannot handle uncertainty. Each formula im-
poses a (hard) constraint over the set of possible worlds, that is, Herbrand interpretations. A missed or an
erroneous SDE detection can have a significant effect on the event recognition results. For example, an
initiation may be based on an erroneously detected SDE, causing the recognition of a CE with absolute
certainty.

Statistical machine learning systems, e.g., methods that are based on probabilistic graphical mod-
els (Rabiner and Juang, 1986; Murphy, 2002; Lafferty et al., 2001), adopt a probabilistic approach to
handle uncertainty. Such probabilistic models have been successfully used in real-word applications
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that involve various forms of uncertainty, such as speech recognition, natural language processing, ac-
tivity recognition, etc. By employing statistical learning techniques, the parameters of such models are
estimated automatically from training example sets. Compared to logic-based methods, probabilistic
methods are less flexible for applications containing several entities and relations among them. By rely-
ing on propositional representations, it is difficult to represent complex relational data or assimilate prior
domain knowledge (e.g., knowledge from experts or common sense knowledge). When the target appli-
cation requires more expressive modelling capabilities, these methods typically are extended specifically
for the application in an ad-hoc fashion — see for example the methods of Brand et al. (1997); Gong
and Xiang (2003); Wu et al. (2007); Vail et al. (2007) and Liao et al. (2005).

Statistical Relational Learning (SRL) aims to develop methods that can effectively represent, reason
and learn in domains with uncertainty and complex relational structure (e.g., relations among instances
of SDEs and CEs). As shown in Figure 2.1, SRL combines a logic-based representation with probabilis-
tic modelling and machine learning. In the domain of event recognition, the logic-based representation
allows one to naturally define the relations between events and incorporate existing domain knowledge.
This powerful representation is combined with probabilistic modelling, in order to naturally handle
uncertainty. Using machine learning techniques, the model can automatically be estimated or refined
according to the given set of example data.

LOGIC

Formal and
declarative
relational
representation

LEARNING

Improving performance
through experience

PROBABILITIES
Sound mathematical
foundation for
reasoning under
uncertainty

Figure 2.1: The research domain of Statistical Relational Learning combines logicbased representation
with probabilistic modelling and machine learning.

Another advantage of SRL is that its probabilistic and logic-based representation naturally enables
parameter sharing (also known as parameter tying). Specifically, the logic-based representation defines
declaratively templates in the form of rules. Given some input evidence (e.g., observed SDEs), all
instantiations of a particular rule share an identical structure and the same parameter (e.g., a weight value
or some probability). Therefore, the number of parameters is reduced and the probability distribution
is simplified, resulting to more efficient inference and learning. This parameter sharing is essentially
similar to the plates notation (Buntine, 1994) or the transition probability distribution sharing between
all states over time in Hidden Markov Models (Rabiner and Juang, 1986), but more generic as it is based
on a logical representation.

2.2.3 Markov Logic Networks
Markov Logic Networks (MLN) (Domingos and Lowd, 2009) is a state-of-the-art SRL method that
provides a framework which combines first-order logic representation with Markov Network modelling.
Specifically, MLNs soften the constraints that are imposed by the formulas of a knowledge base and
perform probabilistic inference. In MLNs, each formula Fi is represented in first-order logic and is
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associated with a weight value wi ∈ R. The higher the value of weight wi, the stronger the constraint
represented by formula Fi. In contrast to classical logic, all worlds in MLNs are possible with a certain
probability. The main idea behind this is that the probability of a world increases as the number of
formulas it violates decreases.

A knowledge base in MLNs may contain both hard and soft-constrained formulas. Hard-constrained
formulas are associated with an infinite weight value and capture the knowledge which is assumed to be
certain. Therefore, an acceptable world must at least satisfy the hard constraints. Soft constraints capture
imperfect knowledge in the domain, allowing for the existence of worlds in which this knowledge is
violated.

Formally, a knowledge base L of weighted formulas, together with a finite domain of constants C,
is transformed into a ground Markov network ML,C . All formulas are converted into clausal form and
each clause is ground according to the domain of its distinct variables. The nodes in ML,C are Boolean
random variables, each one corresponding to a possible grounding of a predicate that appears in L. The
predicates of a ground clause form a clique in ML,C . Each clique is associated with a corresponding
weight wi and a Boolean feature, taking the value 1 when the ground clause is true and 0 otherwise. The
ground ML,C defines a probability distribution over possible worlds and is represented as a log-linear
model.

In event recognition we aim to recognise CEs of interest given the observed streams of SDEs. For
this reason we focus on discriminative MLNs (Singla and Domingos, 2005), that are akin to Conditional
Random Fields (Lafferty et al., 2001; Sutton and McCallum, 2007). Specifically, the set of random
variables in ML,C can be partitioned into two subsets. The former is the set of evidence random variables
X , e.g., formed by a narrative of input ground happens predicates, representing the occurred SDEs. The
latter is the set of random variables Y that correspond to groundings of query holdsAt predicates, as
well as groundings of any other hidden/unobserved predicates, i.e., initiates and terminates. The
joint probability distribution of a possible assignment of Y =y, conditioned over a given assignment of
X=x, is defined as follows:

P (Y =y |X=x) =
1

Z(x)
exp

( |Fc|∑
i=1

wini(x,y)

)
(2.6)

The vectors x ∈ X and y ∈ Y represent a possible assignment of evidence X and query/hidden variables
Y , respectively. X and Y are the sets of possible assignments that the evidence X and query/hidden
variables Y can take. Fc is the set of clauses produced from the knowledge base L and the domain
of constants C. The scalar value wi is the weight of the i-th clause and ni(x,y) is the number of
satisfied groundings of the i-th clause in x and y. Z(x) is the partition function, that normalises over
all possible assignments y′ ∈ Y of query/hidden variables given the assignment x, that is, Z(x) =∑
y′∈Y

exp(
∑|Fc|

i wini(x,y
′)).

Equation (2.6) represents a single exponential model for the joint probability of the entire set of
query variables that is globally conditioned on a set of observables. Such a conditional model can have a
much simpler structure than a full joint model, e.g., a Bayesian Network. By modelling the conditional
distribution directly, the model is not affected by potential dependencies between the variables in X and
can ignore them. The model also makes independence assumptions among the random variables Y , and
defines by its structure the dependencies of Y on X . Therefore, conditioning on a specific assignment
x, given by the observed SDEs in event recognition, reduces significantly the number of possible worlds
and inference becomes much more efficient (Singla and Domingos, 2005; Minka, 2005; Sutton and
McCallum, 2007).
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2.3 Probabilistic Inference

When performing event recognition in noisy enviroments using the Markov Logic Networks framework,
efficient methods for probabilistic inference are required. Directly computing the Equation (2.6) is
intractable, because the value of Z(x) depends on the relationship among all clauses in the knowledge
base. For this reason, a variety of efficient inference algorithms have been proposed in the literature,
based on local search and sampling (Poon and Domingos, 2006; Singla and Domingos, 2006; Biba et al.,
2011), variants of Belief Propagation (Singla and Domingos, 2008; Kersting et al., 2009; Gonzalez et al.,
2009; Kersting, 2012), Integer Linear Programming (Riedel, 2008; Huynh and Mooney, 2009; Noessner
et al., 2013), lifted model counting (Gogate and Domingos, 2011; den Broeck et al., 2011; Apsel and
Brafman, 2012), etc. Below we present the two types of inference that can be performed in MLNs —
i.e., marginal inference and maximum a-posteriori inference (MAP).

2.3.1 Marginal Inference
In event recognition, marginal inference computes the conditional probability that CEs hold given an
input of observed SDEs:

P (holdsAt(CE, T)=True |SDEs)

In other words, this probability value measures the confidence that the CE is recognised. Since it is #P-
complete to compute this probability, we can employ Markov Chain Monte Carlo (MCMC) sampling
algorithms to approximate it.

Due to the combination of logic with probabilistic modelling, inference in MLN must handle both
deterministic and probabilistic dependencies. Deterministic or near-deterministic dependencies are
formed from formulas with infinite and strong weights respectively. Being a purely statistical method,
MCMC can only handle probabilistic dependencies. In the presence of deterministic dependencies, two
important properties of Markov Chains, ergodicity and detailed balance, are violated and the sampling
algorithms give poor results (Poon and Domingos, 2006). Ergodicity is satisfied if all states are aperi-
odically reachable from each other, while detailed balance is satisfied if the probability of moving from
state y to state y′ is the same as the probability of moving from y′ to y. Ergodicity and detailed balance
are violated in the presence of deterministic dependencies because these dependencies create isolated
regions in the state space by introducing zero-probability (impossible) states. Even near-deterministic
dependencies create regions that are difficult to cross — i.e., contain states with near zero-probability.
As a result, typical MCMC methods, such as Gibbs sampling (Casella and George, 1992), get trapped in
local regions. Thus, they are unsound for deterministic dependencies and they find it difficult to converge
in the presence of near-deterministic ones.

To overcome these issues and deal with both deterministic and probabilistic dependencies, we em-
ploy the state-of-the-art MC-SAT algorithm (Poon and Domingos, 2006), which is a MCMC method
that combines satisfiability testing with slice-sampling (Damlen et al., 1999). Initially, a satisfiability
solver is used to find those assignments that satisfy all hard-constrained clauses (i.e., clauses with in-
finite weights). At each subsequent sampling step, MC-SAT chooses from the set of ground clauses
satisfied by the current state the clauses that must be satisfied at the next step. Each clause is chosen
with probability proportional to its weight value. Clauses with infinite or strong weights, that represent,
deterministic and near-deterministic dependencies will always be chosen with absolute certainty and
high probability, respectively. Then, instead of taking a sample from the space of all possible states,
slice-sampling restricts sampling to the states that satisfy at least all chosen clauses. In this manner,
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MCMC cannot get trapped in local regions, as satisfiability testing helps to collect samples from all
isolated and difficult-to-cross regions.

2.3.2 MAP Inference
MAP inference, on the other hand, identifies the most probable assignment among all holdsAt instan-
tiations that are consistent with the given input of observed SDEs:

argmax
holdsAt

P (holdsAt(CE, T) |SDEs)

This task reduces to finding the truth assignment of all holdsAt instantiations that maximises the sum
of weights of satisfied ground clauses. This is equivalent to the weighted maximum satisfiability prob-
lem. The problem is NP-hard in general and there has been significant work on finding an approximate
solution efficiently using local search algorithms (e.g., MaxWalkSAT (Kautz et al., 1997), see Hoos and
Stützle (2004) for in depth analysis) or using linear programming methods (e.g., Riedel (2008); Huynh
and Mooney (2009); Noessner et al. (2013)).

We employ both approaches for approximate MAP inference by using the classic local search
MaxWalkSAT solver proposed by Kautz et al. (1997) and the LP-relaxed Integer Linear Programming
method proposed by Huynh and Mooney (2009). In particular, for the latter algorithm, the ground
Markov network is translated into a set of linear constraints and solved using standard linear optimi-
sation algorithms. Due to the NP-hardness of the problem, the linear programming solver usually re-
turns non-integral solutions — i.e., the assignment of some ground holdsAt(CE, T) is not Boolean, but
within the open interval (0, 1). For that reason, the method uses a rounding procedure called ROUNDUP
(Boros and Hammer, 2002). Specifically, the procedure iteratively assigns the truth value of non-integral
ground atoms, by satisfying the clauses that appear with respect to their cost (i.e., summation of their
weights). Compared to the local search MaxWalkSAT algorithm, the linear programming approach
typically achieves higher accuracy (Huynh and Mooney, 2009).

2.4 Parameter Estimation

The weights of the soft-constrained clauses in MLNs can be estimated from training data, using super-
vised learning techniques. When the goal is to learn a model that recognises CEs with some confidence
(i.e., probability), then the most widely adopted learning approach is to minimise the negative condi-
tional log-likelihood (CLL) function that is derived from Equation (2.6). Given training data that are
composed of a set X of evidence predicates (e.g., ground happens predicates) and their corresponding
query predicates Y (e.g., ground holdsAt predicates), the negative CLL has the following form:

− logPw(Y =y |X=x) = logZ(x)−
|Fc|∑
i=1

wini(x,y)

The vector x is the assignment of truth values to the evidence random variables X , according to the
training data. Similarly, y represents a possible assignment of truth values to the query random variables
Y that are provided as annotation. CLL is used to evaluate how well the model fits the given training
data.

The parameters of the model are the weight values wi that are associated to the soft-constrained
clauses in Fc and can be estimated by using either first-order or second-order optimisation methods
(Singla and Domingos, 2005; Lowd and Domingos, 2007). First-order methods apply standard gradient
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descent optimisation techniques, e.g., the Voted Perceptron algorithm (Collins, 2002; Singla and Domin-
gos, 2005), while second-order methods pick a search direction based on the quadratic approximation
of the target function. As stated by Lowd and Domingos (2007), second-order methods are more ap-
propriate for MLN training, as they do not suffer from the problem of ill-conditioning. In a training
set some clauses may have a significantly greater number of satisfied groundings than others, causing
the variance of their counts to be correspondingly larger. This situation makes the convergence of the
standard gradient descent methods very slow, since there is no single appropriate learning rate for all
soft-constrained clauses.

If the goal is to predict accurate target-predicate probabilities, these approaches are well motivated.
However, in many applications, the actual goal is to maximise an alternative performance metric such as
classification accuracy or F-measure. Max-margin methods are a competing approach to discriminative
training and they also have the advantage that can be adapted to maximise a variety of performance
metrics in addition to classification accuracy (Joachims, 2005).

Thus, an alternative approach to CLL optimisation is max-margin training, which is better suited to
problems where the goal is to maximise the classification accuracy (Huynh and Mooney, 2009, 2011a).
Instead of optimising the CLL, max-margin maximise the following ratio:

P (Y =y|X=x,w)

P (Y =ŷ|X=x,w)

The above equation measures the ratio between the probability of correct truth assignment y of CEs and
the closest competing incorrect truth assignment ŷ=argmaxȳ∈Y\yP (Y =ȳ|X=x) which is also known
as separation oracle. We employ the method of Huynh and Mooney (2009) which formulates the max-
margin problem as 1-slack structural support vector machine (SVM) using a cutting-plane algorithm
proposed by Joachims et al. (2009). Specifically, structural SVMs are predicting structured outputs
instead of simple labels or real values. In particular, they describe the problem of learning a function
h : X 7→ Y , where X is the space of inputs examples, and Y is the space of multivariate and structured
outputs from the set of training examples S = ((x1,y1), . . . , (xn,yn)) ∈ (X × Y)n.

The goal is to find a function h that has low prediction error. This can be accomplished by learning
a discriminant function f : X × Y 7→ R and maximise f over all y ∈ Y for a given input x to get a
classifier of the form:

hw(x) = argmax
y∈Y

fw(x,y)

The discriminant function fw(x,y) = wTΨ(x,y) is linear in the space of features, where w ∈ RN
is a parameter vector and Ψ(x,y) is a feature vector relating an input x and output y. The features need
to be designed for a given problem so that they capture the dependency structure of y and x and the rela-
tions among the outputs y. In our case Ψ(x,y) = n(x,y) which is the number of satisfied groundings
in x and y (see Equation (2.6)). Therefore, the goal is to find a parameter vector w that maximises the
margin by employing linear programming techniques such as the Integer Linear Programming inference
method described in Section 2.3.2.

2.5 Structure Learning

In order to develop a method for learning event definitions from historical data, we are researching
existing algorithms and study various approaches. Below we briefly present structure learning methods
for Markov Logic Networks.
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2.5.1 Top-Down
The top-down structure learning (TDSL) approach (Kok and Domingos, 2005), learn or revise an MLN
one clause at a time, one literal at a time. The initial structure can either be an empty network or existing
KB. Either way, it is useful to start by adding all unit clauses (single atoms) to the MLN. The weights
of these capture the marginal distributions of the predicates, allowing the longer clauses to focus on
modelling predicate dependencies. To extend this initial model, TDSL either repeatedly finds the best
clause using beam search (Furcy and Koenig, 2005) and adds it to the MLN, or adds all “good” clauses
of length l before trying clauses of length l + 1. Candidate clauses are formed by adding each predicate
(negated or otherwise) to each current clause, with all possible combinations of variables, subject to the
constraint that at least one variable in the new predicate must appear in the current clause. Weighted
pseudo-log-likelihood (WPLL) is used as an evaluation measure:

logP •(X = x) =
∑
r∈R

cr

gr∑
k=1

logPw(Xr,k = xr,k|MBx(Xr,k)) (2.7)

where R is the set of first-order atoms, gr is the number of groundings of first-order atom r, and xr,k is
the truth value of the k-th grounding of r. By default, atom weights are simply set cr = 1/gr , which
has the effect of weighting all first-order predicates equally. To combat overfitting, TDSL penalises the
WPLL using a structure prior of e−α

∑
i=1 Fdi , where di is the number of literals that differ between the

current version of the clause and the original one.
TDSL follows a blind generate and test strategy in which many potential changes to an existing

model are systematically generated independent of the training data, and then tested for empirical ade-
quacy. For complex models such as MLNs, the space of potential revisions is combinatorially explosive
and such a search can become difficult to control, resulting in convergence to suboptimal local maxima.

2.5.2 Bottom-Up
Bottom-up learning methods attempt to use the training data to directly construct promising structural
changes or additions to the model, avoiding many of the local maxima and plateaus in a large search
space. The Bottom-Up Structure Learning algorithm (BUSL), introduced by Mihalkova and Mooney
(2007), applies this bottom-up approach to the task of learning MLN structure. Empirically, BUSL
often yields more accurate models much faster than purely top-down structure learning.

BUSL uses a propositional Markov network structure learner to construct template networks that
then guide the construction of candidate clauses. The template networks are composed of template
nodes, conjunctions of one or more literals that serve as building blocks for creating clauses. Template
nodes are constructed by looking for groups of constant-sharing ground literals that are true in the data
and abstracting them by substituting variables for the constants. Thus, these template nodes could also
be viewed as portions of clauses that have true groundings in the data. To understand why conjunctions
of literals with true groundings are good candidates for clause components, consider the special case
of a definite clause: L1 ∧ · · · ∧ Ln⇒P . If the conjoined literals in the body have no true groundings,
then the clause is always trivially satisfied. Therefore, true conjunctions will be most useful for building
effective clauses.To search for these, BUSL generates clause candidates by focusing on each maximal
clique in turn and producing all possible clauses consistent with it. The candidates are then evaluated
using the WPLL score Equation (2.7), as in top-down structure learning.

BUSL restricts its structure search for clauses only to those candidates whose literals correspond to
template nodes that form a clique in the template. It also makes a number of additional restrictions on
the search in order to decrease the number of free variables in a clause, thus decreasing the size of the
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ground MLN during inference, and further reducing the search space. Therefore BUSL typically restrict
the search to very short paths, creating short clauses from them and greedily joining them into longer
ones. Although is faster than the top-down approach, still has the problem of convergence to suboptimal
local maxima.

2.5.3 Hypergraph Lifting
Learning via Hypergraph Lifting (LHL), introduced by Kok and Domingos (2009), is an approach which
directly utilises the data in constructing candidates using relational pathfinding to a fuller extent than pre-
vious ones. It mitigates the exponential search problem by first inducing a more compact representation
of data, in the form of a hypergraph over clusters of constants. Pathfinding on this lifted hypergraph is
typically at least an order of magnitude faster than on the ground training data, and produces MLNs that
are more accurate than previous approaches. A relational database can be viewed as a hypergraph with
constants as nodes and relations as hyperedges. LHL finds paths of true ground atoms in the hypergraph
that are connected via their arguments. To make this tractable (there are exponentially many paths in the
hypergraph), the hypergraph is lifted by jointly clustering the constants to form higher-level concepts,
and find paths in it. Then, the ground atoms are variabilised in each path, and they are used to form
clauses, which are evaluated using a pseudo-likelihood measure. Finally, LHL iterates over the clauses
from shortest to longest and for each clause, compares its score against those of its sub-clauses. If a
clause scores higher than all the sub-clauses, it is retained, otherwise is discarded because is unlikely to
be useful. Finally the retained clauses are added to an MLN, relearn the weights, and keep the clauses
in the MLN which improve the overall WPLL Equation (2.7).

2.5.4 Structural Motifs
Learning using Structural Motifs (LSM), introduced by Kok and Domingos (2010), is an approach that
can find long formulas. Its key insight is that relational data usually contains recurring patterns, which we
term structural motifs. These motifs confer three benefits. First, by confining its search to occur within
motifs, LSM need not waste time following spurious paths between motifs. Second, LSM only searches
in each unique motif once, rather than in all its occurrences in the data. Third, by creating various motifs
over a set of objects, LSM can capture different interactions among them. Structural motif is frequently
characterised by objects that are densely connected via many paths, and can be identified by using the
concept of truncated hitting time in random walks. LHL, described above, represents a database as a
hypergraph containing fewer nodes and therefore fewer paths, ameliorating the cost of finding paths
in the next component. In LHL, two nodes are clustered together if they are related to many common
nodes. Thus, intuitively, LHL is making use of length-2 paths to determine the similarity of nodes. In
contrast, LSM uses longer paths, and thus more information, to find clusterings of nodes (motifs). In
addition, LSM finds various clusterings rather than just a single one.

A structural motif is a set of literals, which defines a set of clauses that can be created by forming
disjunctions over the negations/non-negations of one or more of the literals. Thus, it defines a subspace
within the space of all clauses. LSM discovers subspaces where literals are densely connected and
groups them into a motif. Each hyperedge is labeled with a predicate symbol. LSM groups nodes that
are densely connected by many paths and the hyperedges connecting the nodes into a motif. Then it
compresses the motif by clustering the nodes into high-level concepts, reducing the search space of
clauses in the motif. Finally, LSM runs relational pathfinding on each motif to find candidate rules, and
retains the good ones in an MLN using the same algorithms as LHL.
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Both LHL and LSM are data-driven structure learning algorithms and they cannot exploit back-
ground knowledge of axioms as well as mode declarations for learning rules which are key methods on
relational structure learning approaches as Inductive Logic Programming. This inability makes them
inappropriate for capturing complex relation and learning qualitative meaningful rules.

2.5.5 Online Structure Learning
All previous methods for learning the structure are batch algorithms that are effectively designed for
training data with relatively few mega-examples. A mega-example is a large set of connected facts which
are disconnected and independent from each other. Moreover, most existing weight learning methods for
MLNs employ batch training where the learner must repeatedly run inference over all training examples
in each iteration, which becomes computationally expensive for large datasets.

Online Structure Learning (OSL) (Huynh and Mooney, 2011b) updates both parameters and struc-
ture using incremental structure and parameter learning. In particular, OSL consider the predicted possi-
ble worlds, measure the difference from the ground-truth ones and searches for clauses that differentiate
them. This is related to the idea of Inductive Logic Programming (ILP). In this case each ground-truth
possible world plays the role of a positive example and any predicted possible world that differs from
the ground-truth possible world is incorrect and can be considered as a negative example.

Therefore, at each step t, OSL receives an example, produces the predicted possible world and finds
the atoms that differentiate it from the ground-truth one. Then searches the ground-truth possible world
for clauses specific to this set of atoms. In order to find useful clauses specific to a set of atoms (true
ground atoms), relational pathfinding is used combined with mode declarations to speed up the process.
Subsequently, these paths must be generalised to form first-order clauses. A standard way to generalise
paths is to replace each constant in a conjunction with a variable. However, for many tasks, it is critical
to have clauses that are specific to a particular constant. Consequently, OSL introduce mode declarations
for creating clauses and variabilises all constants in a conjunction according to these mode declarations.
Finally, the resulting set of clauses is added to an empty MLN and learn their parameters using an
online variation of the max-margin learner introduced above. Therefore, OSL shows much potential for
structure learning in MLNs and particularly when incremental properties and speed are desired.

2.6 Incremental Learning of Event Definitions

In this section we present a machine learning technique for the automatic construction of event defi-
nitions, in the language of the Event Calculus. Our approach relies on Inductive Logic Programming
(ILP) (Muggleton and Raedt, 1994; Lavrac and Dzeroski, 1993), a sub-field of machine learning that
uses logic programming as a unifying representation language for the background knowledge, the train-
ing examples and the constructed hypothesis. Although ILP has been successfully applied in a variety of
problems, learning Event Calculus theories from large amounts of data has several challenges that make
most ILP systems inappropriate.

The first difficulty is related to Negation as Failure (NaF) (Clark, 1977), which the Event Calcu-
lus uses to model inertia. Most ILP learners cannot handle NaF at all, or lack a robust NaF seman-
tics (Sakama, 2000; Ray, 2009). Another problem that often arises when dealing with events, is the
need to infer implicit or missing knowledge, such as possible causes of observed events. As an example,
consider the task of learning a set of domain-specific axioms, i.e., a set of initiatedAt and terminatedAt
rules, from examples in the form of holdsAt literals. Since the target predicates are missing from the su-
pervision, one must “discover” proper instances of them in order to construct a hypothesis. In ILP, such a
problem is called non-Observational Predicate Learning (non-OPL) (Muggleton, 1995) and is a task that
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most ILP systems have difficulty to handle. One way to address this problem is through the combination
of ILP with Abductive Logic Programming (ALP) (Denecker and Kakas, 2002; Kakas and Mancarella,
1990; Kakas et al., 1993). Abduction in logic programming is usually given a non-monotonic semantics
(Eshghi and Kowalski, 1989) and in addition, it is by nature an appropriate framework for reasoning
with incomplete knowledge. Although it has a long history in the literature (Ade and Denecker, 1995),
only recently has this combination brought about systems such as XHAIL (Ray, 2009), TAL (Corapi
et al., 2010) and ASPAL (Corapi et al., 2011; Athakravi et al., 2013) that may be used for the induction
of event-based knowledge.

The majority of ILP systems are batch learners, in the sense that all training data must be in place
prior to the initiation of the learning process. This is not always suitable for event-oriented learning
tasks, where data is often collected at different times and under various circumstances, or arrives in
streams. In order to account for new training examples, a batch learner has no alternative but to re-learn
a hypothesis from scratch. The cost is poor scalability when “learning in the large” (Dietterich et al.,
2008) from a growing set of data. This is particularly true in the case of temporal data, which usually
come in large volumes. Consider for instance data which span a large period of time, or sensor data
transmitted at a very high frequency. ILP algorithms do not scale well to large volumes of data, given
that the expressive power of logic programming comes at the cost of increased complexity in ILP.

An alternative approach is learning incrementally, that is, processing training instances when they
become available, and altering previously inferred knowledge to fit new observations, instead of discard-
ing it and starting from scratch. This process, also known as Theory Revision (Wrobel, 1996), exploits
previous computations to speed-up the learning, since revising a hypothesis is generally considered more
efficient than learning it from scratch (Biba et al., 2008; Esposito et al., 2000; Cattafi et al., 2010). How-
ever, scaling to the large volumes of today’s datasets or handling streaming data remains an open issue,
and the development of scalable algorithms for theory revision has been identified as an important re-
search direction (Muggleton et al., 2012). As historical data grow over time, it becomes progressively
harder to revise knowledge, so that it accounts both for new evidence and past experience. One direc-
tion towards scaling theory revision systems is the development of techniques for reducing the need for
reconsulting the whole history of accumulated experience, while updating existing knowledge.

This is the direction we take in this project. We build on the ideas of non-monotonic ILP and use
XHAIL as the basis for a scalable, incremental learner for the induction of event definitions in the form
of Event Calculus theories. We describe a compressive “memory” structure, incorporated in the learning
process, which reduces the need for reconsulting past experience in response to a revision. Using this
structure, we propose a method which, given a stream of examples, a theory which accounts for them
and a new training instance, requires at most one pass over the examples in order to revise the initial
theory, so that it accounts for both past and new evidence. We evaluate empirically our approach on real
and synthetic data from an activity recognition application and a transport management application. Our
results indicate that our approach is significantly more efficient than XHAIL, without compromising
predictive accuracy, and scales adequately to large data volumes.

The rest of this section is structured as follows. Section 2.6.1 presents the domain of activity recog-
nition, which we use as a running example. Section 2.6.2 presents the XHAIL system. Section 2.6.3
presents our incremental learning approach. Experimental evaluation in presented in Section 2.7.
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Narrative Annotation

. . . . . .
happensAt(inactive(id1 ), 999) not holdsAt(moving(id1 , id2 ), 999)

happensAt(active(id2 ), 999)

holdsAt(coords(id1 , 201 , 432 ), 999)

holdsAt(coords(id2 , 230 , 460 ), 999)

holdsAt(direction(id1 , 270 ), 999)

holdsAt(direction(id2 , 270 ), 999)

happensAt(walking(id1 ), 1000) not holdsAt(moving(id1 , id2 ), 1000)

happensAt(walking(id2 ), 1000)

holdsAt(coords(id1 , 201 , 454 , 1000)

holdsAt(coords(id2 , 230 , 440 , 1000)

holdsAt(direction(id1 , 270 , 1000)

holdsAt(direction(id2 , 270 , 1000)

happensAt(walking(id1 ), 1001) holdsAt(moving(id1 , id2 ), 1001)

happensAt(walking(id2 ), 1001)

holdsAt(coords(id1 , 201 , 454 ), 1001)

holdsAt(coords(id2 , 227 , 440 ), 1001)

holdsAt(direction(id1 , 275 ), 1001)

holdsAt(direction(id2 , 278 ), 1001)

. . . . . .

Table 2.2: An annotated stream of SDEs

2.6.1 Running example: Activity recognition
We use the task of activity recognition, as defined in the CAVIAR1 project, as a running example. The
CAVIAR dataset consists of videos of a public space, where actors walk around, meet each other, browse
information displays, fight and so on. These videos have been manually annotated by the CAVIAR
team to provide the ground truth for two types of activity. The first type corresponds to SDEs, that is,
knowledge about a person’s activities at a certain time point (for instance walking, running, standing
still and so on). The second type corresponds to CEs, activities that involve more than one person, for
instance two people moving together, fighting, meeting and so on. The aim is to recognise CEs by
means of combinations of SDEs and some additional domain knowledge, such as a person’s position
and direction at a certain time point.

Low-level events are represented in the Event Calculus by streams of ground happensAt/2 atoms
(see Table 2.2), while CEs and other domain knowledge are represented by ground holdsAt/2 atoms.
Streams of SDEs together with domain-specific knowledge will henceforth constitute the narrative, in
ILP terminology, while knowledge about CEs is the annotation. Table 2.2 presents an annotated stream
of SDEs. We can see for instance that the person id1 is inactive at time 999, her (x, y) coordinates are
(201, 432) and her direction is 270◦. The annotation for the same time point informs us that id1 and id2

1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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are not moving together. Fluents express both CEs and input information, such as the coordinates of a
person. We discriminate between inertial and statically defined fluents. The former should be inferred
by the Event Calculus axioms, while the latter are provided with the input.

Given such a domain description in the language of the Event Calculus, the aim of machine learning
addressed in this work is to automatically derive the Domain-Specific Axioms, that is, the axioms that
specify how the occurrence of SDEs affects the truth values of the fluents that represent CEs, by initiating
or terminating them. Thus, we wish to learn initiatedAt and terminatedAt definitions from positive and
negative examples from the narrative and the annotation.

Henceforth, we use the term “example” to encompass anything known true at a specific time point.
We assume a closed world, thus anything that is not explicitly given is considered false (to avoid con-
fusion, in the tables throughout the paper we state both negative and positive examples). An example’s
time point will also serve as reference. For instance, three different examples e999, e1000 and e1001 are
presented in Table 2.2. According to the annotation, an example is either positive or negative w.r.t. a
particular CE. For instance, e1000 in Table 2.2 is a negative example for the moving CE, while e1001 is a
positive example.

2.6.2 The XHAIL System
XHAIL constructs hypotheses in a three-phase process. Given an ILP task ILP(B ,E ,M ), the first two
phases return a ground program K, called Kernel Set of E, such that B ∪ K � E. The first phase
generates the heads of K’s clauses by abductively deriving from B a set ∆ of instances of head mode
declaration atoms, such that B ∪∆ � E. The second phase generates K, by saturating each previously
abduced atom with instances of body declaration atoms that deductively follow from B ∪∆.

The Kernel Set is a multi-clause version of the Bottom Clause, a concept widely used by inverse
entailment systems like PROGOL and ALEPH. These systems construct hypotheses one clause at a
time, using a positive example as a “seed”, from which a most-specific Bottom Clause is generated by
inverse entailment (Muggleton, 1995). A “good”, in terms of some heuristic function, hypothesis clause
is then constructed by a search in the space of clauses that subsume the Bottom Clause. In contrast,
the Kernel Set is generated from all positive examples at once, and XHAIL performs a search in the
space of theories that subsume it, in order to arrive at a “good” hypothesis. This is necessary due to
difficulties related to the non-monotonicity of NaF, which are typical of systems that learn one clause
at a time. Another important difference between the Kernel Set and the Bottom Clause is that the latter
is constructed by a seed example that must be provided by the supervision, while the former can also
utilise atoms that are derived abductively from the background knowledge, allowing to successfully
address non-OPL problems.

In order to utilise the Kernel Set as a search space, it first needs to be variabilised. To do so, each
term in a Kernel Set clause that corresponds to a variable, as indicated by the mode declarations, is
replaced by an actual variable, while each term that corresponds to a ground term is retained intact.

The third phase of XHAIL functionality concerns the actual search for a hypothesis. Contrary to
other inverse entailment systems like PROGOL and ALEPH, which rely on a heuristic search, XHAIL
performs a complete search in the space of theories that subsume Kv in order to ensure soundness of
the generated hypothesis. This search is biased by minimality, i.e., preference towards hypotheses with
fewer literals. A hypothesis is thus constructed by dropping as many literals and clauses from Kv as
possible, while correctly accounting for all the examples.

To sum up, XHAIL provides an appropriate framework for learning event definitions in the form
of Event Calculus programs. However, a serious obstacle that prevents XHAIL from being widely
applicable as a machine learning system for event recognition is scalability. XHAIL scales poorly,
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partly because of the increased computational complexity of abduction, which lies at the core of its
functionality, and partly because of the combinatorial complexity of learning whole theories, which
may result in an intractable search space. In what follows, we use the XHAIL machinery to develop an
incremental algorithm that scales to large volumes of sequential data, typical of event-based applications.

2.6.3 ILED: Incremental Learning of Event Definitions
We assume a database E of examples, called historical memory, storing examples presented over time.
Initially E = ∅. At time n, ILED (Incremental Learning of Event Definitions) is presented with a
hypothesis Hn such that EC ∪Hn � E , where EC denotes the axioms of the Event Calculus. At time n
ILED is also presented with a new set of examples wn. The goal is to revise Hn to a hypothesis Hn+1,
so that EC ∪Hn+1 � E ∪ wn.

A main challenge of adopting a full memory approach like the one described above is to scale it up
to a growing size of experience. This is in line with a key requirement of incremental learning where
“the incorporation of experience into memory during learning should be computationally efficient, that
is, theory revision must be efficient in fitting new incoming observations” (Langley, 1995; Mauro et al.,
2005). In the stream processing literature, the number of passes over a stream of data is often used as
a measure of the efficiency of algorithms (Li et al., 2004; Li and Lee, 2009). In this spirit, the main
contribution of ILED, in addition to scaling up XHAIL, is that it adopts a “single-pass” theory revision
strategy, that is, a strategy that requires at most one pass over E in order to compute Hn+1 from Hn.

A single-pass revision strategy is far from trivial. For instance, the addition of a new clause C in
response to a set of new examples wn implies that Hn must be checked throughout E . In case C covers
some negative examples in E it should be specialised, which in turn may affect the initial coverage of
C in wn. If the specialisation results in the rejection of positive examples in wn, extra clauses must
be generated and added to Hn, in order to retrieve the lost positives, and these clauses should be again
checked for correctness in E . This process continues until a hypothesis Hn+1 is found, that accounts for
all the examples in E ∪ wn. In general, this requires several passes over the historical memory.

Since experience may grow over time to an extent that is impossible to maintain in the working
memory, we follow an external memory approach (Biba et al., 2008). This implies that the learner does
not have access to all past experience as a whole, but to independent sets of training data, in the form of
sliding windows.

Revisions are implemented by means of revision operators that act upon the theory at hand and later
the examples it accounts for. Revision operators may be generalisation or specialisation operators. The
former increase the example coverage of the revised theory, in order to account for uncovered positive
examples, while the latter decrease example coverage, in order to reject negative examples. ILED does
not utilise revision operators that retract knowledge, such as the deletion of clauses or antecedents are
excluded, due to the exponential cost of backtracking in the historical memory (Badea, 2001). The
supported revision operators are thus:

• Addition of new clauses.

• Refinement of existing clauses, i.e., replacement of an existing clause with one or more speciali-
sations of that clause.

To cover more positive examples, ILED adds initiatedAt clauses and refines terminatedAt clauses,
while to reject negative examples, it adds terminatedAt clauses and refines initiatedAt clauses.
Figure 2.2 illustrates ILED’s theory revision process with a simple example. New clauses are generated
by generalising a Kernel Set of the incoming window, as shown in Figure 2.2, where a terminatedAt
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Running Hypothesis Hn:

initiatedAt(fighting(X ,Y ) ←
holdsAt(close(X ,Y , 23 ),T ).

initiatedAt(fighting(X ,Y ) ←
happensAt(active(X ),T ),
happensAt(abrupt(Y ),T ),
holdsAt(close(X ,Y , 23 ),T ).

initiatedAt(fighting(X ,Y ) ←
happensAt(active(X ),T ),
happensAt(kicking(Y ),T ),
holdsAt(close(X ,Y , 23 ),T ).

. . .

Revised Hypothesis Hn+1

RefinedClauses:

initiatedAt(fighting(X ,Y ) ←
holdsAt(close(X ,Y , 23 ),T ),
happensAt(abrupt(Y ),T ).

initiatedAt(fighting(X ,Y ) ←
holdsAt(close(X ,Y , 23 ),T ),
happensAt(kicking(Y ),T ).

Revised Hypothesis Hn+1 :

NewClauses:

terminatedAt(fighting(X ,Y ) ←
happensAt(walking(X ),T ),
not holdsAt(close(X ,Y , 23 ),T ).

terminatedAt(fighting(X ,Y ) ←
happensAt(walking(X ),T ),
happensAt(active(Y ),T ),
not holdsAt(close(X ,Y , 23 ),T ).

Support set for the
running hypothesis

Kernel Set
construction

Kernel Set
construction

Kernel Set
construction

wnwn−1w0

E
. . . . . .

Figure 2.2: Revision of a hypothesis Hn in response to a new example window wn. E represents the
historical memory of examples.

clause is generated from the new window wn. Moreover, to facilitate refinement of existing clauses,
each clause in the running hypothesis is associated with a memory of the examples it covers throughout
E , in the form of a “bottom program”, which we call support set. The support set is constructed grad-
ually, as new example windows arrive. It serves as a refinement search space, as shown in Figure 2.2,
where the single clause in the running hypothesis Hn is refined w.r.t. the incoming window wn into two
specialisations. Each such specialisation results by adding to the initial clause one antecedent from the
two support set clauses which are presented in Figure 2.2. The revised hypothesis Hn+1 is constructed
from the refined clauses and the new ones, along with the preserved clauses of Hn, if any.

The intuition behind the support set stems from the XHAIL methodology. Given a set of examples
E, XHAIL learns a hypothesis by generalising a Kernel Set K of these examples. E may be too large
to process in one go and a possible solution is to partition E in smaller example sets E1, . . . , En and try
to learn a hypothesis that accounts for the whole of E, by gradually revising an initial hypothesis H1

acquired from E1. In this process of progressive revisions, a compressive memory of “small” Kernel
sets of E1, . . . , En may be used as a surrogate for the fact that one is not able to reason with the whole
Kernel Set K. This is the role of the support set.

By means of this memory, and as far as clause refinement is concerned, ILED is able to repair prob-
lems locally, i.e., in a single example window, without affecting coverage in the parts of the historical
memory where the clause under refinement has been previously checked. In more detail, given a hy-
pothesis clause C and a window w where C must be refined, and denoting by Etested (C ), the part of E
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where C has already been tested, ILED refines C so that its refinement covers all positive examples that
C covers in Etested (C ), making the task of checking Etested (C ) in response to the refinement redundant.

There are two key features of ILED that contribute towards its scalability, which are both due to the
support set: First, the re-processing of past experience is necessary only in the case where new clauses
are generated and is redundant in the case where a revision consists of refinements of existing clauses.
Second, re-processing of past experience requires a single pass over the historical memory, meaning that
it suffices to “re-see” each past window exactly once to ensure that the output revised hypothesis Hn+1

is complete & consistent w.r.t. the entire historical memory.

2.7 Experimental evaluation of ILED

In this section, we present experimental results from two real-world applications: Activity recognition,
using real data from the benchmark CAVIAR video surveillance dataset2, as well as large volumes of
synthetic CAVIAR data; and City Transport Management (CTM) using data from the PRONTO3 project.

Part of our experimental evaluation aims to compare ILED with XHAIL. To achieve this aim we
had to implement XHAIL, because the original implementation was not publicly available until recently
(Bragaglia and Ray, 2014). All experiments were conducted on a 3.4 GHz Linux machine with 12 GB of
RAM. The algorithms were implemented in Python, using the Clingo4 Answer Set Solver (Gebser et al.,
2012) as the main reasoning component, and a Mongodb5 NoSQL database for the historical memory
of the examples.

2.7.1 Activity Recognition
In activity recognition, our goal is to learn definitions of CEs, such as fighting, moving and meeting,
from streams of SDEs like walking, standing, active and abrupt, as well as spatio-temporal knowledge.
We use the benchmark CAVIAR dataset for experimentation. Details on the CAVIAR dataset and more
information about activity recognition applications may be found in (Artikis et al., 2010b). Consider for
instance the following definition of the fighting CE:

initiatedAt(fighting(X ,Y ), T )←
happens(active(X ), T ),
not happens(inactive(Y ), T ),
holdsAt(close(X ,Y , 23 ), T ).

(2.8)

initiatedAt(fighting(X ,Y ), T )←
happens(abrupt(X ), T ),
not happens(inactive(Y ), T ),
holdsAt(close(X ,Y , 23 ), T ).

(2.9)

terminatedAt(fighting(X ,Y ), T )←
happens(walking(X ), T ),
not holdsAt(close(X ,Y , 23 ), T ).

(2.10)
terminatedAt(fighting(X ,Y ), T )←

happens(running(X ), T ),
not holdsAt(close(X ,Y , 23 ), T ).

(2.11)

Clause (2.8) dictates that a period of time for which two persons X and Y are assumed to be fighting
is initiated at time T if one of these persons is active, the other one is not inactive and their distance is

2http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
3http://www.ict-pronto.org/
4http://potassco.sourceforge.net/
5http://www.mongodb.org/
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smaller than 23 pixel positions. Clause (2.9) states that fighting is initiated between two people when
one of them moves abruptly, the other is not inactive, and the two persons are sufficiently close. Clauses
(2.10) and (2.11) state that fighting is terminated between two people when one of them walks or runs
away from the other.

CAVIAR contains noisy data mainly due to human errors in the annotation (List et al., 2005; Artikis
et al., 2010b). Thus, for the experiments we manually selected a noise-free subset of CAVIAR. The
resulting dataset consists of 1000 examples (that is, data for 1000 distinct time points) concerning the
CEs moving, meeting and fighting. These data, selected from different parts of the CAVIAR dataset,
were combined into a continuous annotated stream of narrative atoms, with time ranging from 0 to
1000.

In addition to the real data, we generated synthetic data on the basis of the manually-developed
CAVIAR event definitions described in (Artikis et al., 2010b). In particular, streams of SDEs concern-
ing four different persons were created randomly and were then classified using the rules of (Artikis
et al., 2010b). The final dataset was obtained by generating negative supervision via the closed world
assumption and appropriately pairing the supervision with the narrative. The generated data consists of
approximately 105 examples, which amounts to 100 MB of data.

The synthetic data is much more complex than the real CAVIAR data. This is due to two main
reasons: First, the synthetic data includes significantly more initiations and terminations of a CE, thus
much larger learning effort is required to explain it. Second, in the synthetic dataset more than one CE
may be initiated or terminated at the same time point. This results in Kernel Sets with more clauses,
which are hard to generalise simultaneously.

ILED vs XHAIL

The purpose of this experiment was to assess whether ILED can efficiently generate hypotheses com-
parable in size and predictive quality to those of XHAIL. To this end, we compared both systems on
real and synthetic data using 10-fold cross validation with replacement. For the real data, 90% of ran-
domly selected examples, from the total of 1000 were used for training, while the remaining 10% was
retained for testing. At each run, the training data were presented to ILED in example windows of sizes
10, 50, 100. The data were presented in one batch to XHAIL. For the synthetic data, 1000 examples
were randomly sampled at each run from the dataset for training, while the remaining data were retained
for testing. Similar to the real data experiments, ILED operated on windows of sizes of 10, 50, 100
examples and XHAIL on a single batch.

Table 2.3 presents the experimental results. Training times are significantly higher for XHAIL, due
to the increased complexity of generalising Kernel Sets that account for the whole set of the presented
examples at once. These Kernel Sets consisted, on average, of 30 to 35 16-literal clauses, in the case of
the real data, and 60 to 70 16-literal clauses in the case of the synthetic data. In contrast, ILED had to
deal with much smaller Kernel Sets. The complexity of abductive search affects ILED as well, as the
size of the input windows grows. ILED handles the learning task relatively well (in approximately 30
seconds) when the examples are presented in windows of 50 examples, but the training time increases
almost 15 times if the window size is doubled.

Concerning the size of the produced hypothesis, the results show that in the case of real CAVIAR
data, the hypotheses constructed by ILED are comparable in size with a hypothesis constructed by
XHAIL. In the case of synthetic data, the hypotheses returned by both XHAIL and ILED were signif-
icantly more complex. Note that for ILED the hypothesis size decreases as the window size increases.
This is reflected in the number of revisions that ILED performs, which is significantly smaller when the
input comes in larger batches of examples. In principle, the richer the input, the better the hypothesis
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ILED XHAIL

Real CAVIAR data G = 10 G = 50 G = 100 G = 900

Training Time (sec) 34.15 (± 6.87) 23.04 (± 13.50) 286.74 (±98.87) 1560.88 (±4.24)
Revisions 11.2 (± 3.05) 9.1 (± 0.32) 5.2 (±2.1) −

Hypothesis size 17.82 (± 2.18) 17.54 (± 1.5) 17.5 (±1.43) 15 (±0.067)
Precision 98.713 (± 0.052) 99.767 (± 0.038) 99.971 (±0.041) 99.973 (±0.028)

Recall 99.789 (± 0.083) 99.845 (± 0.32) 99.988 (±0.021) 99.992 (±0.305)

Synthetic CAVIAR data G = 10 G = 50 G = 100 G = 1000

Training Time (sec) 38.92 (± 9.15) 33.87 (± 9.74) 468 (±102.62) 21429 (±342.87)
Revisions 28.7 (± 9.34) 15.4 (± 7.5) 12.2 (±6.23) −

Hypothesis size 143.52 (± 19.14) 138.46 (± 22.7) 126.43 (±15.8) 118.18 (±14.48)
Precision 55.713 (± 0.781) 57.613 (± 0.883) 63.236 (±0.536) 63.822 (±0.733)

Recall 68.213 (± 0.873) 71.813 (± 0.756) 71.997 (±0.518) 71.918 (±0.918)

Table 2.3: Comparison of ILED and XHAIL. G is the window granularity.

that is initially acquired, and consequently, the less the need for revisions in response to new training in-
stances. There is a trade-off between the window size (thus the complexity of the abductive search) and
the number of revisions. A small number of revisions on complex data (i.e., larger windows) may have
a greater total cost in terms of training time, as compared to a greater number of revisions on simpler
data (i.e., smaller windows). For example, in the case of window size 100 for the real CAVIAR data,
ILED performs 5 revisions on average and requires significantly more time than in the case of a window
size 50, where it performs 9 revisions on average. On the other hand, training times for windows of size
50 are slightly better than those obtained when the examples are presented in smaller windows of size
10. In this case, the “unit cost” of performing revisions w.r.t. a single window are comparable between
windows of size 10 and 50. Thus the overall cost in terms of training time is determined by the total
number of revisions, which is greater in the case of window size 10.

Concerning predictive quality, the results indicate that ILED’s precision and recall scores are com-
parable to those of XHAIL. For larger input windows, precision and recall are almost the same as those
of XHAIL. This is because ILED produces better hypotheses from larger input windows. Precision and
recall are smaller in the case of synthetic data for both systems, because the testing set in this case is
much larger and complex than in the case of real data.

ILED Scalability

The purpose of this experiment was to assess the scalability of ILED. The experimental setting was as
follows: Sets of examples of varying sizes were randomly sampled from the synthetic dataset. Each
such example set was used as a training set in order to acquire an initial hypothesis using ILED. Then a
new window which did not satisfy the hypothesis at hand was randomly selected and presented to ILED,
which subsequently revised the initial hypothesis in order to account for both the historical memory (the
initial training set) and the new evidence. For historical memories ranging from 103 to 105 examples,
a new training window of size 10, 50 and 100 was selected from the whole dataset. The process was
repeated ten times for each different combination of historical memory and new window size. Figure
2.3 presents the average revision times. The revision times for new window sizes of 10 and 50 examples
are very close and therefore omitted to avoid clutter. The results indicate that revision time grows
polynomially in the size of the historical memory.
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Figure 2.3: Average times needed for ILED to revise an initial hypothesis in the face of new evidence presented
in windows of size 10, 50 and 100 examples. The initial hypothesis was obtained from a training set of varying
size (1K, 10K, 50K and 100K examples) which subsequently served as the historical memory.

2.7.2 City Transport Management
In this section we present experimental results from the domain of City Transport Management (CTM).
We use data from the PRONTO6 project. In PRONTO, the goal was to inform the decision-making of
transport officials by recognising CEs related to the punctuality of a public transport vehicle (bus or
tram), passenger/driver comfort and safety. These CEs were requested by the public transport control
centre of Helsinki, Finland, in order to support resource management. Low-level events were provided
by sensors installed in buses and trams, reporting on changes in position, acceleration/deceleration,
in-vehicle temperature, noise level and passenger density. At the time of the project, the available
datasets included only a subset of the anticipated SDE types as some SDE detection components were
not functional. For the needs of the project, therefore, a synthetic dataset was generated. The synthetic
PRONTO data has proven to be considerably more challenging for event recognition than the real data,
and therefore we chose the former for evaluating ILED (Artikis et al., 2014). The CTM dataset contains
5 · 104 examples, which amount approximately to 70 MB of data.

In contrast to the activity recognition application, the manually developed CE definitions of CTM
that were used to produce the annotation for learning, form a hierarchy. In these hierarchical event def-
initions, it is possible to define a function level that maps all CEs to non-negative integers as follows:
A level-1 event is defined in terms of SDEs (input data) only. An level-n event is defined in terms of
at least one level-n−1 event and a possibly empty set of SDEs and CEs of level below n−1. Hierar-
chical definitions are significantly more complex to learn as compared to non-hierarchical ones. This is
because initiations and terminations of events in the lower levels of the hierarchy appear in the bodies of
event definitions in the higher levels of the hierarchy, hence all target definitions must be learnt simul-
taneously. As we show in the experiments, this has a striking effect on the required learning effort. A
solution for simplifying the learning task is to utilise knowledge about the domain (the hierarchy), learn
event definitions separately, and use the acquired theories from lower levels of the event hierarchy as
non-revisable background knowledge when learning event definitions for the higher levels. Below is a
fragment of the CTM event hierarchy:

6http://www.ict-pronto.org/
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ILED XHAIL

G = 5 G = 10 G = 20

Training Time (hours) 1.35 (± 0.17) 1.88 (± 0.13) 4.35 (±0.25)
Hypothesis size 28.32 (± 1.19) 24.13 (± 2.54) 24.02 (±0.23)

Revisions 14.78 (± 2.24) 13.42 (± 2.08) −
Precision 63.344 (± 5.24) 64.644 (± 3.45) 66.245 (± 3.83)

Recall 59.832 (± 7.13) 61.423 (± 5.34) 62.567 (± 4.65)

Table 2.4: Comparative performance of ILED and XHAIL on selected subsets of the CTM dataset each
containing 20 examples. G is the granularity of the windows.

initiatedAt(punctuality(Id ,nonPunctual), T )←
happens(stopEnter(Id ,StopId , late), T ).

(2.12)

initiatedAt(punctuality(Id ,nonPunctual), T )←
happens(stopLeave(Id ,StopId , early), T ).

(2.13)

terminatedAt(punctuality(Id ,nonPunctual), T )←
happens(stopEnter(Id ,StopId , early), T ).

(2.14)

terminatedAt(punctuality(Id ,nonPunctual), T )←
happens(stopEnter(Id ,StopId , scheduled), T ).

(2.15)

initiatedAt(drivingQuality(Id , low), T )←
initiatedAt(punctuality(Id ,nonPunctual), T ),
holdsAt(drivingStyle(Id , unsafe), T ).

(2.16)

initiatedAt(drivingQuality(Id , low), T )←
initiatedAt(drivingStyle(Id , unsafe), T ),
holdsAt(punctuality(Id ,nonPunctual), T ).

(2.17)

terminatedAt(drivingQuality(Id , low), T )←
terminatedAt(punctuality(Id ,nonPunctual), T ).

(2.18)

terminatedAt(drivingQuality(Id , low), T )←
terminatedAt(drivingStyle(Id , unsafe), T ).

(2.19)

Clauses (2.12) and (2.13) state that a period of time for which vehicle Id is said to be non-punctual
is initiated if it enters a stop later, or leaves a stop earlier than the scheduled time. Clauses (2.14) and
(2.15) state that the period for which vehicle Id is said to be non-punctual is terminated when the vehicle
arrives at a stop earlier than, or at the scheduled time. The definition of non-punctual vehicle uses two
SDEs, stopEnter and stopLeave.

Clauses (2.16)-(2.19) define low driving quality. Essentially, driving quality is said to be low when
the driving style is unsafe and the vehicle is non-punctual. Driving quality is defined in terms of CEs (we
omit the definition of driving style to save space). Therefore, the bodies of the clauses defining driving
quality include initiatedAt and terminatedAt literals.

ILED vs XHAIL

In this experiment, we tried to learn simultaneously definitions for all target concepts, a total of nine
interrelated CEs, seven of which are level-1, one is level-2 and one is level-3. According to the employed
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language bias, each such CE must be learnt, while at the same time it may be present in the body
of another CE in the form of (potentially negated) holdsAt/2, initiatedAt/2, or terminatedAt
predicate. The total number of SDEs involved is 22.

We used tenfold cross validation with replacement, on small amounts of data, due to the complexity
of the learning task. In each run of the cross validation, we randomly sampled 20 examples from the
CTM dataset, 90% of which was used for training and 10% was retained for testing. This example size
was selected after experimentation, in order for XHAIL to be able to perform in an acceptable time
frame. Each sample consisted of approximately 150 atoms (narrative and annotation). The examples
were given to ILED in windows of granularity 5 and 10, and to XHAIL in one batch. Table 2.4 presents
the average training times, hypothesis size, number of revisions, precision and recall.

ILED took on average 1-2 hours to complete the learning task, for windows of 5 and 10 examples,
while XHAIL required more than 4 hours on average to learn hypotheses from batches of 20 exam-
ples. Compared to activity recognition, the learning setting requires larger Kernel Set structures that are
hard to reason with. An average Kernel Set generated from a batch of just 20 examples consisted of
approximately 30-35 clauses, with 60-70 literals each.

Like the activity recognition experiments, precision and recall scores for ILED are comparable to
those of XHAIL, with the latter being slightly better. Unlike the activity recognition experiments, preci-
sion and recall had a large diversity between different runs. Due to the complexity of the CTM dataset,
the constructed hypotheses had a large diversity, depending on the random samples that were used for
training. For example, some CE definitions were unnecessarily lengthy and difficult to be understood by
a human expert. On the other hand, some level-1 definitions could in some runs of the experiment, be
learnt correctly even from a limited amount of data. Such definitions are fairly simple, consisting of one
initiation and one termination rule, with one body literal in each case.

This experiment demonstrates several limitations of learning in large and complex applications. The
complexity of the domain increases the intensity of the learning task, which in turn makes training times
forbidding, even for small amount of data such as 20 examples (approximately 150 atoms). This forces
one to process small sets of examples at time, which in complex domains like CTM, results to over-fitted
theories and rapid increase in hypothesis size.

Learning With Hierarchical Bias

In an effort to improve the experimental results, we utilised domain knowledge about the event hierarchy
in CTM and attempted to learn CEs in different levels separately. To do so, we had to learn a complete
definition from the entire dataset for a CE, before utilising it as background knowledge in the learning
process of a higher-level event. To facilitate the learning task further, we also used expert knowledge
about the relation between specific SDEs and CEs, excluding from the language bias mode declarations
which were irrelevant to the CE that is being learnt at each time.

The experimental setting was therefore as follows: Starting from the level-1 target events, we pro-
cessed the whole CTM dataset in windows of 10, 50 and 100 examples with ILED. Each CE was learnt
independently of the others. Once complete definitions for all level-1 CEs were constructed, they were
added to the background knowledge. Then we proceeded with learning the definition for the single
level-2 event. Finally, after successfully constructing the level-2 definition, we performed learning in
the top-level of the hierarchy, using the previously constructed level-1 and level-2 event definitions as
background knowledge. We did not attempt a comparison with XHAIL, since due to the amounts of
data in CTM, the latter is not able to operate on the entire dataset.

Table 2.5 presents the results. For level-1 events, scores are presented as minimum-maximum pairs.
For instance, the training times for level-1 events with windows of 10 examples, ranges from 4.46 to
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ILED

level-1 G = 10 G = 50 G = 100

Training Time (min) 4.46 – 4.88 5.78 – 6.44 6.24 – 6.88
Revisions 2 – 11 2 – 9 2 – 9

Hypothesis size 4 – 18 4 – 16 4 – 16
Precision 100% 100% 100%

Recall 100% 100% 100%

level-2 G = 10 G = 50 G = 100

Training Time (min) 8.76 9.14 9.86
Revisions 24 17 17

Hypothesis size 31 27 27
Precision 100% 100% 100%

Recall 100% 100% 100%

level-3 G = 10 G = 50 G = 100

Training Time (min) 5.78 6.14 6.78
Revisions 6 5 5

Hypothesis size 13 10 10
Precision 100% 100% 100%

Recall 100% 100% 100%

Table 2.5: ILED with hierarchical bias.

4.88 minutes. Levels 2 and 3 have just one definition each, therefore Table 2.5 presents the respective
scores from each run. Training times, hypothesis sizes and overall numbers of revisions are comparable
for all levels of the event hierarchy. Level-1 event definitions were the easiest to acquire, with training
times ranging approximately between 4.50 to 7 minutes. This was expected since clauses in level-1
definitions are significantly simpler than level-2 and level-3 ones. The level-2 event definition was the
hardest to construct with training times ranging between 8 and 10 minutes, while a significant number of
revisions was required for all window granularities. The definition of this CE (drivingStyle) is relatively
complex, in contrast to the simpler level-3 definition, for which training times are comparable to the
ones for level-1 events.

The largest parts of training times were dedicated to checking an already correct definition against
the part of the dataset that had not been processed yet. That is, for all target events, ILED converged to
a complete definition relatively quickly, i.e., in approximately 1.5 to 3 minutes after the initiation of the
learning process. From that point on, the extra time was spent on testing the hypothesis against the new
incoming data.

Window granularity slightly affects the produced hypothesis for all target CEs. Indeed, the defini-
tions constructed with windows of 10 examples are slightly larger than the ones constructed with larger
window sizes of 50 and 100 examples. Notably, the definitions constructed with windows of granularity
50 and 100, were found concise, meaningful and very close to the actual hand-crafted rules that were
utilised in PRONTO.
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3

Conclusions and Future Work

In this document, we presented techniques for reasoning and learning composite event (CE) definitions
under uncertainty and large amounts of data. Uncertainty is unavoidable in real-world applications and
may seriously compromise the accuracy of event recognition and forecasting. Furthermore, due to the
dynamic nature of the SPEEDD use cases, machine learning must deal with large amounts of data that
continuously evolve. As a result, the knowledge base of event definitions may need to be refined or it
may need to be enhanced with new definitions.

To overcome the issues that arise from uncertainty, we combine probabilistic with logic-based mod-
elling by employing the Event Calculus formalism and the probabilistic relational framework of Markov
Logic Networks (MLN). This combination has the advantage of expressing formally and declaratively
CE definitions and domain background knowledge, while the probabilistic modelling allows to perform
probabilistic inference under uncertainty. Furthermore, we outline machine learning techniques in order
to perform parameter estimation and structure learning from annotated data.

To deal with large amounts of data in machine learning, we presented an incremental ILP system
(ILED) for machine learning knowledge bases for event recognition, in the form of Event Calculus theo-
ries. ILED combines techniques from non-monotonic ILP and in particular, the XHAIL algorithm, with
theory revision. It acquires an initial hypothesis from the first available piece of data, and revises this hy-
pothesis as new data arrive. Revisions account for all accumulated experience. The main contribution of
ILED is that it scales-up XHAIL to large volumes of sequential data with a time-like structure, typical of
event-based applications. By means of a compressive memory structure that supports clause refinement,
ILED has a scalable, single-pass revision strategy, thanks to which the cost of theory revision grows as a
tractable function of the perceived experience. In this work, ILED was evaluated on an activity recogni-
tion application and a transport management application. The results indicate that ILED is significantly
more efficient than XHAIL, without compromising the quality of the generated hypothesis in terms of
predictive accuracy and hypothesis size. Moreover, ILED scales adequately to large data volumes which
XHAIL cannot handle.

Below we outline the research agenda for the second year of SPEEDD.

• We will implement the max-margin parameter estimation for the probabilistic Event Calculus
formalism, in order to estimate the weights of the event definitions (e.g., definitions of traffic
congestion, credit card fraudulent activity, etc.) from annotated data. The learnt weights express
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the confidence value of each definition relative to the other event definitions in the knowledge
base, in order to improve the event recognition accuracy — e.g., degrease the number of false
positives and false negatives.

• We are planning to combine the probabilistic and logic-based modelling of the Event Calculus and
Markov Logic Networks with the incremental learning techniques of the ILED method, in order
to efficiently refine, as all as introduce new event definitions, and thus improve the recognition
performance — e.g., increase the recall.

• We will evaluate the accuracy of the learnt parameters and definitions for both fraud and traffic
management applications.

For the implementation of the machine learning algorithms we are planning to use and extend the
functionality of the open-source Markov Logic Networks framework LoMRF1.

1https://github.com/anskarl/LoMRF
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