

Scalable Data Analytics,
Scalable Algorithms, Software Frameworks
and Visualization ICT-2013 4.2.a

Project FP7-619435/SPEEDD
Deliverable D3.1
Distribution Public

 http://speedd-project.eu

First version of event recognition and

forecasting technology

(Part 1)

Fabiana Fournier (IBM) and Inna Skarbovsky (IBM)

 Status: Final (Version 1.0)

 December 2014

Project

Project Ref. no FP7-619435
Project acronym SPEEDD
Project full title Scalable ProactivE Event-Driven Decision Making
Project site http://speedd-project.eu/
Project start February 2014
Project duration 3 years
EC Project Officer Aleksandra Wesolowska

Deliverable

Deliverable type Prototype
Distribution level Restricted
Deliverable Number D3.1
Deliverable Title First version of event recognition and forecasting technology
Contractual date of delivery M11 (December 2014)
Actual date of delivery December 2014
Relevant Task(s) WP3/Tasks 3.2 and 3.3
Partner Responsible IBM
Other contributors NCSR
Number of pages 50
Author(s) Fabiana Fournier (IBM) and Inna Skarbovsky (IBM)
Internal Reviewers Pedro Bizarro and Ivo Correia (Feedzai)
Status & version Final
Keywords Complex event processing, forecasted/predicted event, event

recognition, probabilistic event

iii

 D3.1 First version of event recognition and forecasting technology

Executive Summary
At the heart of the SPEEDD prototype relies the event processing component. Its role is to detect events

and derive situations to feed the decision module so proactive actions can be taken. To this end, the

complex event processing component needs to deal with uncertainty in the input as well as the output

events. This document is the first part of the Deliverable 3.1 “First version of event recognition and

forecasting technology” and its purpose is to present the advancements made in the complex event

processing tooling of SPEEDD to cope with uncertainty.

The inclusion of uncertainty aspects, mainly manifested in the run-time module, impacts all levels of the

architecture and logic of an event processing engine. Even at this stage, the current implemented

applications possess a high level of sophistication and complexity. The extensions made in the complex

event processing engine include the addition of new built-in attributes and functions, the support of

new types of operands, and the support of the event processing patterns to cope with all these.

Although these extensions are driven by the use cases requirements, these have not been implemented

ad-hoc, but as generic building blocks in the complex event processing programmatic language making it

a first-of-a-kind event processing engine capable to deal with uncertainty and to derive forecasted

events.

iv

 D3.1 First version of event recognition and forecasting technology

Document History

Version Date Author Change Description
0.1
0.2

15/11/2014
1/12/2014

Fabiana Fournier (IBM)
Fabiana Fournier (IBM)

First draft
Second draft for internal review

0.3 15/12/2014 Fabiana Fournier (IBM) Updates per internal review
1.0 30/12/2014 Fabiana Fournier (IBM) Final fixes and cleanup

v

 D3.1 First version of event recognition and forecasting technology

Table of Contents
1 Introduction .. 1

1.1 Purpose and scope of the document .. 1

1.2 Relationship with other documents ... 1

2 Complex event processing background .. 2

2.1 Terminology .. 2

2.1.1 Event types .. 2

2.1.2 Context .. 3

2.1.3 Event Processing Network (EPN) .. 3

2.1.4 Pattern policies ... 5

2.1.5 Context initiator policies ... 5

2.2 Complex event processing tooling .. 6

2.2.1 Event attributes... 6

2.2.2 PROTON interfaces.. 6

2.2.3 Input and output adapters .. 7

2.2.4 PROTON definitions .. 8

2.2.5 Expressions in PROTON ... 9

3 Real-time event recognition and forecasting under uncertainty ... 10

3.1 Event definitions ... 10

3.2 Extending PROTON’s run-time engine .. 11

3.2.1 New built-in attributes .. 11

3.2.2 New operands types ... 11

3.2.3 New built-in functions ... 11

3.3 Extending PROTON’s authoring tool ... 12

3.4 Implementation of first EPN for the fraud detection use case ... 12

3.4.1 Event types .. 14

3.4.2 Event processing agents .. 14

3.4.3 Uncertainty ... 23

3.4.4 Summary ... 24

3.5 Implementation of first EPN for the traffic management use case .. 24

vi

 D3.1 First version of event recognition and forecasting technology

3.5.1 Calculations of congestion, clear congestion, and “almost congestion” situations 25

3.5.2 Event types .. 26

3.5.3 Event processing agents .. 27

3.5.4 Uncertainty ... 35

3.5.5 Summary ... 36

4 Performance evaluation.. 36

4.1 Throughput ... 37

4.1.1 Datasets .. 37

4.1.2 Throughput results for the fraud detection use case ... 37

4.1.3 Throughput results for traffic management use case .. 37

4.2 Latency .. 37

4.2.1 Datasets .. 37

4.2.2 Latency results for the fraud detection use case .. 38

4.2.3 Latency results for traffic management use case ... 38

4.3 Performance evaluation results summary .. 39

5 Summary and future steps .. 40

6 References .. 41

List of Tables
Table 1: Operators in PROTON EEP ... 10

Table 2: Initial EPN for the fraud use case .. 14

Table 3: Initial EPN for the traffic management use case ... 27

vii

 D3.1 First version of event recognition and forecasting technology

List of Figures
Figure 1: Illustration of an event processing network .. 3

Figure 2: Event recognition process in an EPA .. 4

Figure 3: PROTON interfaces .. 7

Figure 4: PROTON 's screenshot showing the new certainty attribute .. 12

Figure 5: Fraud use case initial EPN .. 13

Figure 6: Event recognition process for Trend EPA .. 15

Figure 7: Context for Trend EPA.. 16

Figure 8: Event recognition process for IncreasingAmounts EPA ... 16

Figure 9: Context for IncreasingAmounts EPA .. 17

Figure 10: Event recognition process for IncreasingAmountsCardIndication EPA 17

Figure 11: Context for IncreasingAmountsCardIndication EPA .. 18

Figure 12: Event recognition process for FraudAtATM EPA ... 18

Figure 13: Context for FraudAtATM EPA .. 19

Figure 14: Event recognition process for Count (CVV attack) EPA ... 20

Figure 15: Context for Count (CVV attack) EPA .. 20

Figure 16: Event recognition process for CombinedCountTrendFraud (the TREND after COUNT case) EPA

 .. 21

Figure 17: Context for CombinedCountTrendFraud (the TREND after COUNT case) EPA 21

Figure 18: Event recognition process for Sequence (Cloned Card) EPA ... 22

Figure 19: Context for Sequence (Cloned Card) EPA .. 23

Figure 20: Sigmoid function results for EPA4 (COUNT) and EPA1 (TREND) .. 23

Figure 21: Traffic management use case initial EPN ... 25

Figure 22: Illustrative diagram of the different traffic situations ... 26

Figure 23: Event recognition process for AvgDensityAndSpeedPerLocation EPA 28

Figure 24: Context for AvgDensityAndSpeedPerLocation EPA ... 28

Figure 25: Event recognition process for Congestion EPA .. 29

Figure 26: Event recognition process for Congestion EPA .. 29

Figure 27: Event recognition process for ClearCongestion EPA ... 30

Figure 28: Context for ClearCongestion EPA... 31

Figure 29: Event recognition process for PredictedTrend EPA ... 31

Figure 30: Context for PredictedTrend EPA .. 32

Figure 31: Event recognition process for PredictedCongestion EPA .. 32

Figure 32: Context for PredictedCongestion EPA ... 33

Figure 33: Event recognition process for AvgOnRamp EPA .. 33

Figure 34: Event recognition process for AvgOnRamp EPA .. 34

Figure 35: Event recognition process for AvgAggregationOverTime EPA .. 34

Figure 36: Event recognition process for AvgAggregationOverTime EPA .. 35

viii

 D3.1 First version of event recognition and forecasting technology

Acronyms

CDF Cumulative Distribution Function

CEP Complex Event Processing

CNP Card Not Present

CP Card Present

CVV Card Verification Value

EEP Extendable Expression Parser

EPA Event Processing Agent

EPN Event Processing Network

JSON JavaScript Object Notation

SPEEDD Scalable ProactivE Event-Driven Decision making

WP Work Package

1

1 Introduction

1.1 Purpose and scope of the document
Work Package 3 (WP3) “Real-Time Event Recognition and Forecasting under Uncertainty” deals with all

the developments around event processing technologies under uncertainty. This report is the first

version of SPEEDD (Scalable ProactivE Event-Driven Decision) event recognition and forecasting

technology and it includes first results for T3.2 (event recognition under uncertainty) and T3.3 (event

forecasting under uncertainty), and the first version of the event recognition and forecasting component

(software). This report presents the extensions and developments made with relation to the project two

use cases: the traffic management use case (see D7.1 “User Requirements and Scenario Definitions”)

and the credit card fraud use case (see D8.1 “User Requirements and Scenario Definitions”). Two

updated versions of this report will be submitted at M22 and M32 of the project to describe further

developments achieved.

This report covers all aspects of the event driven run-time module in SPEEDD. Basically, the report

describes the extensions to the engine (both in the user interface and in the run-time) and the

implementation for first year of the CEP (Complex Event Processing) component applications. A

complementary report led by partner NCSR describes the first results for T3.1 (machine learning for

event definition construction) which covers the off-line aspects of the event-driven under uncertainty.

The main role of the CEP component is to feed the decision making component with meaningful events

for its decision making process (see D6.1 “The Architecture Design of the SPEEDD prototype”). The

developments made in the CEP engine are driven by requirements imposed by both the use cases and

the decision making component. In other words, the use cases and decision making process

requirements dictate the extensions to be made in the run-time engine.

This report is structured as follows: Section 2 provides some background on CEP and terminology used

throughout this report. Section 3 describes the CEP component in SPEEDD, including extensions made to

cope with uncertainty both in the user interface and run-time engine, as well as the implementation of

the two use cases. Section 4 presents initial performance outcomes of our implementations. We

conclude the report with summary and future steps.

1.2 Relationship with other documents
At the heart of the SPEEDD prototype resides the complex event processing component, therefore, this

report is strongly related to D6.1 “The Architecture Design of the SPEEDD prototype”. The requirements

for the CEP engine are dictated from the use cases in the project, thus, this report is also strongly related

to system requirements for the Proactive Traffic Management use case described in D8.1 and for the

Proactive Credit Card Fraud Management described in D7.1. The main goal of the CEP component is to

derive forecasted events that feed the decision making component so actions can be taken before an

2

 D3.1 First version of event recognition and forecasting technology

undesired event (such as a congestion situation in the high way) takes place. Therefore our work is also

related to D4.1 “First version of real-time decision-making technology”.

2 Complex event processing background
Each complex event processing engine uses its own terminology and semantics. We follow the

semantics presented in Etzion’s and Niblet’s book [1]. We describe below some main terms used in our

work for the sake of clarity. We use the IBM Proactive Technology Online (PROTON) research asset as

the complex event processing engine in SPEEDD (see D6.1). This engine has been released as open

source as an outcome of the FI-WARE project (being Proton the CEP Generic Enabler in the FI-WARE

platform1) and it is extended to cope with predictive capabilities in the scope of the SPEEDD project.

2.1 Terminology
Henceforth we briefly present main concepts and building blocks in our terminology. For further details

refer to [1].

2.1.1 Event types

Generally speaking, an event is an occurrence within a particular system or domain; it is something that

has happened, or is contemplated as having happened in that domain. The word “event” is also used to

mean a programming entity that represents such an occurrence in a computing system. In the latter

definition, an event is an object of an event type. Events are actual instances of the event types and

have specific values. For example, the event "today at 10 PM a customer named John Doe made a new

deposit to his bank account” is an instance of the Transaction event type. An event type specifies the

information that is contained in its event instances by defining a set of attributes. The event attributes

are grouped into the header or metadata (e.g., the occurrence time of the event instance) and the

payload (specific information about the event, e.g., customer name).

We relate to the following event types:

A raw event is an event that is introduced into an event processing system by an event producer (an

entity at the edge of an event processing system that introduces events to the system). An example of a

raw event is a Cash deposit into a bank account.

A derived event is an event that is generated as a result of event processing that takes place inside the

event processing system. An example is that a Large cash deposit has been made into a bank account.

A situation is a derived event that is emitted outside the event processing system and consumed by at

least one consumer (an entity at the edge of an event processing system that receives events from the

system). An example is a Suspicious bank account.

1 https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Architecture

https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Architecture

3

 D3.1 First version of event recognition and forecasting technology

2.1.2 Context

Context is a named specification of conditions that groups event instances so they can be processed in a

related way. While there exist several context dimensions, in this report we employ the two most

commonly used dimensions (in the future we might enlarge the set of context types, depending on the

scenarios requirements): temporal and segmentation-oriented. A temporal context consists of one or

more time intervals, possibly overlapping. Each time interval corresponds to a context partition, which

contains events that occur during that interval. A segmentation-oriented context is used to group event

instances into context partitions based on the value of an attribute or collection of attributes in the

instances themselves. As a simple example, consider a single stream of input events, in which each

event contains a customer identifier attribute. The value of this attribute can be used to group events so

there is a separate context partition for each customer. Each context partition contains only events

related to that customer, so the behaviour of each customer can be tracked independently of the other

customers. A composite context is a context that is composed from two or more contexts, known as its

members. The set of context partitions for the composite context is the Cartesian product of the

partition sets of the member contexts

2.1.3 Event Processing Network (EPN)

An Event Processing Network (EPN) is a conceptual model, describing the event processing flow

execution. An EPN comprises a collection of Event processing Agents (EPAs), event producers, events

and consumers (Figure 1). The network describes the flow of events originating at event producers and

flowing through various event processing agents to eventually reach event consumers. For example, in

Figure 1, events from Producer 1 are processed by Agent 1. Events derived by Agent 1 are of interest to

Consumer 1 but are also processed by Agent 3 together with events derived from Agent 2. Note that the

intermediary processing between producers and consumers in every installation is made up of several

functions and often the same function is applied to different events for different purposes at different

stages of the processing.

Figure 1: Illustration of an event processing network

2.1.3.1 Event Processing Agent (EPA)

An Event Processing Agent (EPA) is a component that, given a set of input/incoming events within a

context, applies some logic for generating a set of output/derived events. An EPA can apply different

event patterns to detect specific relations among the input events.

An EPA performs three logical steps, a.k.a pattern matching process or event recognition (see Figure 2).

Please note that all three steps are optional but at least one must be done inside an EPA.

Event
Producer 1

Event
Producer 2

Event
Consumer 1

Event
Consumer 2

EPA 1

EPA 3EPA 2

4

 D3.1 First version of event recognition and forecasting technology

 The filtering step, in which relevant events from the input events are selected for processing

according to the filter conditions. The output of this step is a set of participant events.

 The matching step that takes all events that passed the filtering and looks for matches between

these events, using an event processing pattern or some other kind of matching criterion. The

output of this step is the matching set.

 The derivation step that takes the output from the matching step and uses it to derive the

output events by applying derivation formulae.

Figure 2: Event recognition process in an EPA

An event pattern is a template specifying one or more combinations of events. Given any collection of

events, if it’s possible to find one or more subsets of those events that match a particular pattern, it can

be said that such a subset satisfies the pattern. Some common examples of patterns applied in our

scenarios:

 Sequence, means that at least one instance of all participating event types must arrive in a

specified order for the pattern to be matched.

 Count, means that the number of instances in the participant event set satisfies the pattern’s

number assertion.

 All, means that at least one instance of all participating event types must arrive for the pattern

to be matched; the arrival order in this case is immaterial.

 Trend, events need to satisfy a specific change (increasing or decreasing) over time of some

observed value; this refers to the value of a specific attribute or attributes.

 Absence, a specified event(s) must not occur within a predefined time window. The matching

set in this case is empty.

 Average (AVG), means that the value of a specific attribute, averaged over all participant events,

satisfies the average threshold assertion.

Event Processing Agent

Incoming/input
events

Derived/output
events

within
context

filtering

matching

deriving

participant events

matching set

5

 D3.1 First version of event recognition and forecasting technology

2.1.4 Pattern policies

A pattern policy is a named parameter that disambiguates the semantics of the pattern and the pattern

matching process. Pattern policies fine-tune the way the pattern detection process works. Proton

supports five types of policies:

Evaluation policy – when the matching sets are produced? The EPA can either generate output

incrementally (in this case the evaluation policy is called Immediate) or at the end of the temporal

context (called Deferred).

Cardinality policy – how many matching sets are produced within a single context partition? Cardinality

policy helps limiting the number of matching sets generated, and thus the number of derived events

produced. The policy type can be single, meaning only one matching set is generated; or unrestricted,

meaning there are no restrictions on the number of matching sets generated.

Repeated/Instance Selection type policy – what happens if the matching step encounters multiple

events of the same type? The override repeated policy means that whenever a new event instance is

encountered and the participant set already contains the required number of instances of that type, the

new instance replaces the oldest previous instance of that type. The every repeated policy means that

every instance is kept, meaning all possible matching sets can be produced. First means that every

instance is kept, but only the earliest instance of each type is used for matching. Last is the same as first,

but the latest instance of each type is used for matching.

Consumption policy – what happens to a particular event after it has been included in the matching set?

Possible consumption policies are consume, meaning each event instance can be used in only one

matching set; and reuse, meaning an event instance can participate in an unrestricted number of

matching sets.

Policy relevance can be dictated by the event pattern. For example, the evaluation policy for an absence

pattern is always deferred (as we are testing the existence of an event instance for a specified temporal

context). Also, not all possible policies combinations are meaningful. For example, the choice of

consumption policy is irrelevant if the cardinality policy is single, because that means that the matching

step runs only once.

2.1.5 Context initiator policies

A temporal context starts with an initiator and ends with a terminator. An initiator can be an event,

system startup, or absolute time. A terminator ends the temporal context. The terminator can be an

event, relative expiration time, an absolute expiration time, or “never ends”, i.e. the temporal context

remains open until engine shutdown.

A context initiator policy tunes up the semantics for temporal contexts in which the context initiator is

determined by an event. A context initiator policy defines the behaviours required when a window has

been opened and a subsequent initiator event is detected. The options are: add, a new window is

opened alongside the existing one; or ignore, the original window is preserved.

6

 D3.1 First version of event recognition and forecasting technology

2.2 Complex event processing tooling
In the SPEEDD project the complex event processing component is built on and extends the IBM

Proactive Technology Online (PROTON) research asset. This asset has become open-source2 in the scope

of the FI-WARE FI-PPP project3. Documentation regarding the CEP open source asset can be found in [2],

[3], and [4].

PROTON comprises a run-time engine, producers, and consumers with the characteristics and

capabilities described in the Background Section (Section 2). Specifically, it includes an integrated run-

time platform to develop, deploy, and maintain event-driven applications using a single programming

model.

2.2.1 Event attributes

Every event instance has a set of built-in attributes (metadata). PROTON employs the following

attributes in the event type's metadata:

 Name – of the event type.

 OccurenceTime – a timestamp attribute, which we expect the event source to fill in as the

occurrence time of the event. If left empty, this equals the detectionTime attribute value.

 DetectionTime – a timestamp attribute that records the time the CEP engine detected the event.

The time is measured in milliseconds, specifying the time difference between the current

machine time at the moment of event detection and midnight, January 1, 1970 UTC.

 EventId – a unique string identification of the event, which can be set by the event source to

match the asynchronous output for the event.

 EventSource – holds the source of the event (usually the name of event producer).

The above built-in attributes can be used in an expression in the same manner as user-defined attributes.

User defined attributes can be added to the event class by defining their types. If the attribute is an

array, its dimension should be specified.

2.2.2 PROTON interfaces

PROTON standalone runtime engine has three main interfaces with its environment as depicted in

Figure 3.

1. Input adapters for getting incoming events

2. Output adapters for sending derived events

3. CEP application definition (build time or authoring tool)

2 Link to the open source: https://github.com/ishkin/Proton
3 http://www.fi-ware.org/

https://github.com/ishkin/Proton

7

 D3.1 First version of event recognition and forecasting technology

The application definitions, i.e. the EPN, are written by the application developer during the build-time.

The definitions output in JSON (JavaScript Object Notation) format, is provided as configuration to the

CEP run-time engine. At run-time, the standalone CEP engine receives incoming events through the

input adapters, processes these incoming events according to the definitions, and sends derived events

through the output adapters (see Figure 3).

Figure 3: PROTON interfaces

2.2.3 Input and output adapters

As aforementioned, the definitions of the producers and consumers are specified during the application

build-time and are translated into input and output adapters during execution time in the standalone

CEP engine. The physical entities representing the logical entities of producers and consumers in

PROTON are adapter instances. For each producer an input adapter is defined, which defines how to

pull the data from the source resource and how to format the data into PROTON's object format before

delivering it to the run-time engine. The adapter is environment-agnostic, but uses the environment-

specific connector object, injected into the adapter during its creation, to connect to PROTON runtime.

In the distributed implementation (on top of STORM [5]) where PROTON runtime is just one part of the

general architecture, the communication with the CEP engine is done via STORM communication

channels. Therefore, Proton receives STORM tuples as input and emits STORM tuples as output. Each

tuple consists of the name of the event type, and a Map of the event attributes. Therefore, in this case

the adapters are not employed. For more elaborated specification of this mechanism see D6.1.

In the trials carried out to test the use cases implementation (see Sections 3.4 and 3.5) we use a CSV file

for input and output. The input file contains simulated data using the same schema that real-data in

order to test the correctness of the EPN defined for the use cases. In the prototype demo, we use Kafka

[6] as the event bus as described in the architecture deliverable (D6.1).

2

JMS

Files

REST

DB

Custom

Input Adapters

JMS

Files

REST

DB

Custom

Output Adapters

PROTON Run time

PROTON Build-time

8

 D3.1 First version of event recognition and forecasting technology

2.2.4 PROTON definitions

The CEP application definitions file can be created in three ways:

1. Build-time user interface – By this, the application developer creates the building blocks of the

application definitions. This is done by filling up forms without the need to write any code. The

file that is generated is exported in a JSON format to the CEP run-time engine.

2. Programming – The JSON definitions file can alternatively be generated programmatically by an

external application and fed into the CEP run-time engine.

3. Manually – The JSON file is created manually and fed into the CEP run-time engine.

The created JSON file comprises the following definitions:

 Event types – the events that are expected to be received as input or to be sent as output. An

event type definition includes the event name and a list of its attributes.

 Producers – the event sources and the way PROTON gets events from those sources.

 Consumers – the event consumers and the way they get derived events from PROTON.

 Temporal contexts – time window contexts in which event processing agents are active.

 Segmentation contexts – semantic contexts that are used to group several events to be used by

the EPAs.

 Composite contexts – grouping together several different contexts.

 Event processing agents – patterns of incoming events in specific context that detect situations

and generate derived events. An EPA includes most of the following general characteristics:

o Unique name

o EPA type (operator). For each operator, different sets of properties and operands are

applicable.

o Context

o Other properties such as condition

o Participating events

o Segmentation contexts

o Derived events

The JSON file that is created at build-time contains all EPN definitions, including definitions for event

types, EPAs, contexts, producers, and consumers. At execution, the standalone run-time engine accesses

the metadata file, loads and parses all the definitions, creates a thread per each input and output

adapter, and starts listening for events incoming from the input adapters (producers) and forwards

events to output adapters (consumers).

9

 D3.1 First version of event recognition and forecasting technology

For the distributed implementation on top of STORM, an input Bolt serves the same function as input

adapter, and the derived events are passed as STORM tuples to the next stage in the SPEEDD topology

processing (see D6.1).

2.2.5 Expressions in PROTON

When building an event processing application, we sometimes need to set values to attributes or

properties. We do so by writing expressions. These expressions are tested at build-time and evaluated at

runtime by the PROTON EEP (Expandable Expression Parser)

An expression can be any combination of these:

 Constant (5, true, false, "silver", …)

 Field (<EventName>.<EventAttribute>)

 Built-in attribute (detectionTime, count, …) and built-in aggregation attributes (sum, max, …)

 Operator (+, -, =, …)

 Segmentation context (segmentationContext.CustomerKey)

 Built-in function (arrayContains(a,v), distance(x1,y1,x2,y2), …)

Examples:

Max(DayStart.InitialStockLevel,0)

if CustomerRating="gold" then "approve" else "reject" endif

Examples of built-in functions:

 Max – Max(a,b,c) returns the maximum number among the arguments.

 Min – Min(x,100) returns the minimum number among the arguments.

 Average – Average(x,y,z,t) returns the average number of the arguments.

 Modulo – Mod(x,y) returns the remainder when dividing x by y.

 Round – Round(x) returns the closest integer value to x.

 Absolute – Abs(x) returns the absolute value of x.

 CompareTo – CompareTo(str1,str2) compares two strings lexicographically. The result is a

negative integer if str1 lexicographically precedes str2. The result is a positive integer if str1

lexicographically follows the str2. The result is zero if the strings are equal

 Distance – Distance(x1,y1,x2,y2) returns the distance between (x1,y1) and (x2,y2).

 Angle – Angle(x,y,z,w) calculates the angle generated between (x1,y1),(0,0),(x2,y2).

 IsNull – IsNull(val) checks whether the given val equals null. Returns a Boolean value.

PROTON EEP uses any of the following operators (Table 1).

10

 D3.1 First version of event recognition and forecasting technology

Table 1: Operators in PROTON EEP

Type Operator Example

Mathematical + - / * customerBuy.quantity + 5

Comparison = == != > < <= >= customerRating != "gold"

Boolean and or not xor

& && | || ! ^ true false

customerOrigin = "USA" or

customerLanguage = "English"

If-then-else if <cond1> then Exp1

elseif <cond2> then Exp2

else exp3

endif

If customerRating = "gold" then

customerRequest

else 0

endif

Lexical ++ (concatenation) "Name: " ++ Trans.customerName

EEP expressions can include operands of types Boolean, Datetime, Double, Integer, Numeric, String, or

array of each of these simple types.

3 Real-time event recognition and
forecasting under uncertainty

Proactive event driven computing deals with the inherent uncertainty in the event inputs, in the output

events, or in both ([7][8],[9], [10], and [11]).

In order to cope with uncertainty, PROTON has been extended both in the authoring tool and in the run-

time engine as described in the following Sections. Requirements are driven by the use cases as well as

by the Decision Module, as the latter apply situations detected by the CEP module to conduct real-time

decision making.

3.1 Event definitions
In general, there exist two methods to define the rule patterns for a CEP application: machine learning

and experts. In the first, the patterns are learnt automatically by a computer program, while in the

second, they are given by an external entity; usually a subject expert matter specialized in the domain. It

is also possible to combine between these two methods. Currently, the event patterns for both use

cases as described in this document and implemented in PROTON, have been given by the domain

partners. It might be that the hybrid approach will be used in the scope of SPEEDD at a later phase,

11

 D3.1 First version of event recognition and forecasting technology

when definitions automatically learnt will go through a manual refinement process in order to be

compatible to PROTON’s definition file.

3.2 Extending PROTON’s run-time engine
We say that if an event is predicted or forecasted to occur in the future, it can be expressed by setting

the event a future occurrence time with an optional supported distribution and a certainty value. This

imposes fundamental extensions in PROTON’s Extendable Expression Parser (EEP) as described

henceforth.

3.2.1 New built-in attributes

The event metadata in PROTON has been extended as follows:

 Addition of the built-in double Certainty attribute that stores the certainty of this event. An

event has a default certainty value equal to 1, while it can have any value between (0-1].

 Support for distribution values (see next Section) of Occurrence time built-in attribute.

3.2.2 New operands types

The operands types have been extended to cope with distributions. Two types of distributions are

supported: Continuous distribution and discrete distribution. Canonic forms of distribution have been

implemented for each of these types. In the continuous case, there is a continuous function which its

integral equals to 1. In the discrete case, it is a set of values with their associated probabilities where the

sum of all probabilities is equal to 1.

Furthermore for continuous distributions, we support the Sigmoid(a,b,x) function which returns 1/ (1 +

e^(-a (x - b))) (see Section 3.4.3.)

For discrete distributions, we currently support the following:

 Bernoulli (p) – where p is the probability of success

 Binomial (n, p) – where n is the number of trials and p is the probability of success

 Uniform (list of numbers) – each number is associated with a probability equals to 1/number of

numbers

3.2.3 New built-in functions

 CDF – CDF(d, alpha) – returns the cumulative distribution function of d (which is of type

distribution) at point alpha, which is the probability that d is smaller or equal to alpha.

 Mean – Mean(d) – returns the expectation of the distribution d

 PDF – PDF(d, x) – returns the probability density function of the distribution d at point x

 Percentile – Percentile(d, alpha) – returns the smallest value x, for which CDF(d, x) is larger or

equal to alpha

 Var – Var(d) – returns the variance of the distribution d

We also added the two following built-in functions for the sake of the Sigmoid function

12

 D3.1 First version of event recognition and forecasting technology

 Power(a,x) - returns a^x for two doubles

 Exp(x) - returns e^x

As a result, the EPAs’ operators have been adjusted to deal with uncertain or probabilistic operands and

expressions. Our two outstanding examples in our first implementations include TREND, COUNT, and

ALL (see Sections 3.4 and 3.5).

3.3 Extending PROTON’s authoring tool
The authoring tool forms have been accommodated to support all above extensions. Figure 4 shows a

screenshot from PROTON’s authoring tool showing the addition of the Certainty built-in attribute.

Figure 4: PROTON 's screenshot showing the new certainty attribute

3.4 Implementation of first EPN for the fraud detection use case
The overarching aim of the CEP module in this use case is to detect a potential fraud incident. To this

end, a first EPN has been created with the collaboration of the use case owner partner Feedzai with the

goal of having something meaningful and representative, yet doable to be achieved in the first year of

the project. The outcome is an EPN consisting of seven EPAs shown in Figure 5 and detailed in the

following Sections. For the sake of simplicity we only show the EPAs and the events flow in the network.

Dotted lines represent events, other than input events, that are either initiators (in yellow) or

terminators (in red) of a context. The PROTON JSON definitions file that comprises this EPN is provided

as part of the software deliverable that accompanies this report.

13

 D3.1 First version of event recognition and forecasting technology

In the current EPN we want to fire situations in the following cases (for detailed descriptions of each EPA

see Sections 3.4.2.1-3.4.2.7):

 An attempt of withdrawing/paying of increasing amounts is carried out for a single card (EPA2,

IncreasingAmounts).

 Several attempts of using a wrong CVV (Card Verification Value) for the same card are made

(EPA5 or CVVatack).

 Increasing amounts of withdrawals/payments are carried out after a CVV attack occurs (EPA1

and EPA6).

 Multiple occurrences of a suspicious fraudulent card happen at the same ATM (EPA3 and EPA4)

 There are two consecutive attempts of using the same card in differ locations (EPA7 or

ClonedCard).

Figure 5: Fraud use case initial EPN

In the fraud use case we distinguish between two types of transactions: CP (Card is Present) and CNP

(Card Not Present). For further information on the use cases please refer to D7.1 “User Requirements

and Scenario Definitions”. The logic of the patterns is the same for the two types, unless explicitly

mentioned (see EPA7 description in Section 3.4.2.7). What differs is the temporal time windows length

(CNP is much faster so the temporal windows will be shorter). In the current EPN we implicitly apply the

CP case, having relatively long temporal windows (a few minutes) and omitting the filtering or opening

of contexts just for the CP case. Obviously, the full implementation should cover both cases with explicit

filter expressions for each EPA.

IncreasingAmountsCardIndication

Fraud

EPA5

(CVV attack)

Tr
an

sa
ct

io
n

EPA2
(increasing
amounts)

SequenceFraud

IncreasingAmounts

Si
tu

at
io

n
s

EPA1

(Trend)

CountFraud

EPA6
(TREND after

COUNT)

TrendAfterCount

EPA7

(Cloned card)

EPA3
(IncAmounts

CardIndication)

EPA4

(FraudAtATM)

FraudAtATM

14

 D3.1 First version of event recognition and forecasting technology

3.4.1 Event types

Eight event types have been defined that comprise the event inputs, outputs/derived, and situations as

shown in Figure 5. For the sake of simplicity we only show the user-defined attributes or the event

payload and not the metadata (refer to Section 2.2.1.).

Although the names of concepts in can be determined freely by the application designer in PROTON, we

use some naming conventions for the sake of clarity. We denote event types with capital letters. Built-

in/metadata attributes start with a capital letter, as well as payload attributes that hold operators values,

while payload attributes start with a lower letter. Table 2 shows the event definitions for the fraud EPN.

Note that the Transaction raw event includes more fields or attributes. We defined only the ones

required for pattern detection in the current EPN implementation. When running in SPEEDD

architecture, PROTON will ignore event attributes not specified in its JSON.

Table 2: Initial EPN for the fraud use case

Event name Transaction

Payload card_pan; terminal_id; cvv_validation; amount_eur; acquirer_country; is cnp

Event name IncreasingAmounts

Payload card_pan; terminal_id; TrendCount

Event name TrendAfterCount

Payload card_pan; terminal_id; TrendCount

Event name IncreasingAmountsFirst

Payload card_pan; terminal_id; TrendCount

Event name FraudAtATM

Payload terminal_id

Event name CountFraud

Payload card_pan; TransactionsCount

Event name Fraud

Payload card_pan

Event name SequenceFraud

Payload card_pan

3.4.2 Event processing agents

Henceforth, we describe the EPAs in the following order: Event name; motivation; event recognition

process (following Figure 2); contexts along with temporal context policy; and pattern policies.

In the event recognition process we only show the steps that take place in the specific EPA, while the

others are greyed. For the filtering step we show the filtering expression; for the matching step we

denote the pattern variables; and for the derivation step we denote the values assignment and

calculations. Please note that for the sake of simplicity we only show the assignments that are not copy

of values (all other derived event attributes values are copied from the input events). For attributes, we

just denote their names without the prefix of ‘attribute_name.’

15

 D3.1 First version of event recognition and forecasting technology

In our initial implementation we use the Sigmoid probabilistic function to calculate the probability of the

derived event. The Sigmoid function has been selected since it fits to situations that exhibit a

progression from small beginnings that accelerate over time. A sigmoid curve is produced by a

mathematical function having an "S" shape [12]. Of course, other parameters and functions might be

applicable as well and are one of the topics for further testing in year two and three of the project. A

Sigmoid function receives three parameters (a,b,x) and returns 1/ (1 + e^(-a (x - b))). The patterns

have been tested with several parameters and the ones shown in the figures, have been chosen to run

the input events set.

3.4.2.1 EPA1: Trend

Motivation: Check for consecutive transactions (at least two) with increasing amounts. The monitoring

of the pattern starts only after a situation of CountFraud is detected. The same EPA as EPA2, except that

the derived event serves as input for EPA6 and its context is initialized by the CountFraud event and not

Transaction.

Event recognition process:

Figure 6: Event recognition process for Trend EPA

trendNumber and trend.count are built-in TREND variables that denote the minimal number of input

events required in order to satisfy the pattern and the actual number correspondingly.

Pattern policies:

Evaluation Cardinality Repeated Consumption

IMMEDIATE UNRESTRICTED FIRST REUSE

Context:

Segmentation: by card_pan

Initiator policy: IGNORE

Meaning: A temporal window of 5 min is opened, once a CountFraud event is derived (see EPA5). In this

elapsed time we check for a TREND pattern over the amounts in the transactions per a single card.

(amount_eur,
trendNumber>1)

Event Processing Agent

Transaction

within
context

filtering

deriving Certainty:Sigmoid(1,6,trend.count)
TrendCount:trend.count

TrendAfterCount(increasing)
TREND

16

 D3.1 First version of event recognition and forecasting technology

According to the pattern policies (see table above), we can derive more than one event (with larger

values in the certainty attribute) if the TREND pattern is satisfies. After 5 min the temporal window

closes.

Figure 7: Context for Trend EPA

3.4.2.2 EPA2: IncreasingAmounts

Motivation: Check for consecutive transactions (at least two) with increasing amounts that can hint to a

possible fraud attempt.

Event recognition process:

Figure 8: Event recognition process for IncreasingAmounts EPA

Pattern policies:

Evaluation Cardinality Repeated Consumption

IMMEDIATE UNRESTRICTED FIRST REUSE

Context:

Segmentation: by card_pan AND terminal_id

Initiator policy: IGNORE

CountFraud + 5 min

Transaction

TrendAfterCount

TrendAfterCount

(amount_eur,
trendNumber>1)

Event Processing Agent

Transaction

within
context

filtering

(increasing)
TREND

deriving Certainty:Sigmoid(1,6,trend.count)
TrendCount:trend.count

IncrasingAmounts

17

 D3.1 First version of event recognition and forecasting technology

Meaning: A temporal window of 5 min is opened with the arrival of a first Transaction event. In this

elapsed time we check for a TREND pattern over the amounts in the transactions per a single card and a

single ATM. As in the previous case, we derive an event as it happens during the time window.

Figure 9: Context for IncreasingAmounts EPA

3.4.2.3 EPA3: IncreasingAmountsCardIndication

Motivation: The same as before, but this EPA’s derived event is input to EPA4 and serves to eliminate

multiple occurrences of a single card number and send a suspicious fraudulent card only once (the last

one) to EPA4 which tests whether there are multiple credit cards frauds at the same ATM.

Event recognition process:

Figure 10: Event recognition process for IncreasingAmountsCardIndication EPA

Pattern policies:

Evaluation Cardinality Repeated Consumption

DEFERRED UNRESTRICTED FIRST REUSE

Context:

Segmentation: by card_pan AND terminal_id

Initiator policy: IGNORE

+ 5 min

Transaction

IncreasingAmounts

IncreasingAmounts

(amount_eur,
trendNumber>1)

Event Processing Agent

Transaction

within
context

filtering

(increasing)
TREND

deriving

IncreasingAmounts
CardIndication

Certainty:Sigmoid(1,5,trend.count)
TrendCount:trend.count

18

 D3.1 First version of event recognition and forecasting technology

Meaning: A temporal window of 5 min is opened with the arrival of a first Transaction event. In this

elapsed time we check for a TREND pattern over the amounts in the transactions per a single card and a

single ATM. In this case, we derive a single event at the end of the window if the TREND pattern is

satisfied (as per the deferred policy) and with the most updated trend.count at the moment of

derivation

Figure 11: Context for IncreasingAmountsCardIndication EPA

3.4.2.4 EPA4: FraudAtATM

Motivation: Checking for suspicious ATMs. We are looking for at least two different cards with

increasing amounts (a suspicious card) in a single ATM.

Event recognition process:

Figure 12: Event recognition process for FraudAtATM EPA

Count sums the number of the input event occurrences, while count is the assertion value for the

COUNT pattern. We are detecting the pattern once the probability that we have at least two instances

of IncreasingAmounts attacks on this terminal is more than 0.8. Since the IncreasingAmounts events are

probabilistic, the assertion should take this into account in the counting calculation. The more input

events we have (more IncreasingAmounts with different cards at this terminal), the higher the Certainty

value of FraudAtATM derived event.

+ 5 min

Transaction

IncreasingAmountsCardIndication

Event Processing Agent

within
context

filtering

COUNT

deriving

count:((1.0 – CDF(Count,2.0))>0.8

FraudAtATMIncreasingAmounts
CardIndication

Certainty:1 – CDF(Count,2.0)

19

 D3.1 First version of event recognition and forecasting technology

Pattern policies:

Evaluation Cardinality Repeated Consumption

IMMEDIATE UNRESTRICTED FIRST REUSE

Context:

Segmentation: by terminal_id

Initiator policy: IGNORE

Meaning: A temporal window of 5 min is opened with the arrival of a first

IncreasingAmountsCardIndication event. In this elapsed time we check for a COUNT pattern per a single

ATM. As in the previous case, we derive an event as it happens during the time window. Note, that since

the COUNT pattern is probabilistic we might encounter more than two input events before deriving an

output event.

Figure 13: Context for FraudAtATM EPA

3.4.2.5 EPA5: Count (CVV attack)

Motivation: CVV attack case, a fraud is suspected whenever a large number of attempts (>3) using a

card with wrong CVVs are made.

+ 5 min

IncreasingAmountsCardIndication

FraudAtATM

FraudAtATM

20

 D3.1 First version of event recognition and forecasting technology

Event recognition process:

Figure 14: Event recognition process for Count (CVV attack) EPA

Pattern policies:

Evaluation Cardinality Repeated Consumption

DEFERRED UNRESTRICTED FIRST REUSE

Context:

Segmentation: by card_pan

Initiator policy: IGNORE

Meaning: A short temporal window of 2 min is opened with the arrival of a first Transaction event per

card. At the end of the window the COUNT evaluation is made and a derived event is emitted if the

pattern is satisfied.

Figure 15: Context for Count (CVV attack) EPA

3.4.2.6 EPA6: CombinedCountTrendFraud (The TREND after COUNT case)

Motivation: The TREND after COUNT case, that is, we look for a case that an attempt for a CVV attack

has been made preceding increasing amounts (TREND pattern). In other words, a “correct CVV” was

found after several attempts that led to consecutive increasing amounts in the transactions. We have

this EPA in addition to EPA1 so that we can combine different policies and derive events with payload

count: >3

Event Processing Agent

within
context

filtering

COUNT

deriving

cvv_validation != 1

Transaction

Certainty: Sigmoid(1,9,count)
TransactionsCount:count

CountFraud

+ 2 min

Transaction

CountFraud

21

 D3.1 First version of event recognition and forecasting technology

attributes generated from events in the matching set (EPA1 is a TREND operator with no access to the

matching set events, see Section 3.5.53.4.4).

Event recognition process:

Figure 16: Event recognition process for CombinedCountTrendFraud (the TREND after COUNT case) EPA

Pattern policies:

Evaluation Cardinality Repeated Consumption

IMMEDIATE UNRESTRICTED LAST REUSE

Context:

Segmentation: by card_pan

Initiator policy: IGNORE

Meaning: A temporal window of 5 min is opened with the arrival of a first CountFraud event per card.

During the time window, we look for pairs of a CountFraud and TrendAfterCount and emit a Fraud event

whenever the pattern is satisfied.

Figure 17: Context for CombinedCountTrendFraud (the TREND after COUNT case) EPA

Event Processing Agent

within
context

filtering

ALL

deriving

CountFraud;
TrendAfterCount

Fraud

Certainty =
((CountFraud.Certainty*TrendAfter
Count.Certainty)*100<1.0)
then
((CountFraud.Certainty*TrendAfter
Count.Certainty)*100)
else 1.0

CountFraud + 5 min

CountFraud;
TrendAfterCount

Fraud Fraud Fraud

22

 D3.1 First version of event recognition and forecasting technology

3.4.2.7 EPA7: Sequence (Cloned Card)

Motivation: The cloned card case (for CP only), we check that two “close transactions” (a few minutes

apart) cannot take place at two different physical locations (a location is represented by a country code,

therefore, whenever there are two different locations, these are physically distant). T1 and T2 are

aliases of the event type Transaction.

Event recognition process:

Figure 18: Event recognition process for Sequence (Cloned Card) EPA

Note that the SequenceFraud derived event has a certainty of 1 (in this case the fraud indication is of

100%) and therefore the Certainty attribute is not shown in the derivation step (the default is “1”).

Pattern policies:

Evaluation Cardinality Repeated Consumption

IMMEDIATE UNRESTRICTED T1=FIRST;
T2=OVERRIDE

CONSUME

Context:

Segmentation: by card_pan

Initiator policy: IGNORE

Meaning: A temporal window of 5 min is opened with the arrival of a first Transaction event per card.

During the time window, we look for pairs such as the location of the first transaction in the pair differs

from the second transaction in the pair. In these cases, a SequenceFraud event is emitted. The

Transaction events that participate in the pattern matching are those that belong to the CP case. The

policies defined assure that every two consecutive events with different locations are checked in the

pattern.

Event Processing Agent

within
context

filtering

SEQUENCE

deriving

Transaction
(T1, T2)

T1.acquirer_country != T2.acquirer.country

SequenceFraud

T1.is_cnp == 0; T2.is_cnp==0

23

 D3.1 First version of event recognition and forecasting technology

Figure 19: Context for Sequence (Cloned Card) EPA

3.4.3 Uncertainty

In our implemented EPN and first fraud use case event driven application we deal with two types of

uncertainties: uncertainty in the derived event since the fact that a pattern is satisfied doesn’t implicate

a fraudulent activity with 100% assurance; and uncertainty in the input events. The latter stems from

the fact that the input events are themselves derived event from the first type, thus the uncertainty is

propagated forward.

3.4.3.1 Uncertainty in the derived event

In this case, the input events are certain (a Transaction event happens) but the derived event is not

certain (e.g., the fact that we have 4 Transactions with increasing amount of money doesn’t necessarily

imply a fraud). EPA1, EPA2, EPA3, and EPA5 belong to this category of cases.

In this case we applied the Sigmoid function as aforementioned to derive the certainty of the derived

event. Different values have been tested and the ones showed in the EPAs figures have been selected

for the specific EPAs. For example, for EPA5 the values chosen are a:1 and b:9, for EPA2 a:1 and b:6

(Figure 20).

Figure 20: Sigmoid function results for EPA4 (COUNT) and EPA1 (TREND)

+ 5 min

Transaction

SequenceFraud

COUNT TREND

24

 D3.1 First version of event recognition and forecasting technology

Henceforth we show the probability calculations for EPA6, the Trend after Count case (Equation 1):

The probability of a fraudulent event (F) given that a COUNT pattern (C) is satisfied (EPA5) is: P (F | C=c)

The probability of a fraudulent event given a TREND pattern (T) is satisfied (EPA1) is: P (F | T=tr)

The probability of a fraudulent event given first a COUNT and then a TREND (these are two independent

variables) using Bayes formula:

𝑃(𝐹 |𝐶=𝑐 ∩𝑇=𝑡𝑟) = 𝑃 (𝐹 ∩𝐶=𝑐 ∩𝑇=𝑡𝑟) / 𝑃 (𝐶=𝑐 ∩𝑇=𝑡𝑟) =

𝑃(𝐶=𝑐│𝐹)∙𝑃(𝑇=𝑡𝑟│𝐹)∙𝑃(𝐹) / 𝑃(𝐶=𝑐 ∩𝑇=𝑡𝑟) = 𝑃 (𝐹|𝐶=𝑐)∙𝑃(𝐹|𝑇=𝑡𝑟) / 𝑃(𝐹)

Equation 1: Calculation of the probability for EPA6 (Trend after Count)

whereas we assume P(F) is given (in our tests, P(F) = 0.01)

3.4.3.2 Uncertainty in the input event(s)

When the input events contain uncertainty, this is propagated to the pattern matching step which

becomes uncertain. EPAs 4 and 6 belong to this category.

For EPA4 we use a Cumulative Distribution Function (CDF) to calculate the certainty that a COUNT is

detected. In EPA6 the ALL certainty is the multiplication of the certainty of the input events, since they

are independent.

3.4.4 Summary

The first EPN for the fraud detection use case (see Figure 5) includes seven EPAs, one raw event, five

situations (four probabilistic and one deterministic). Our implementation relies on PROTON’s building

blocks and capabilities and it might be possible that the same application will look differently when

implemented in another CEP engine that uses different building blocks. For example, we might

sometimes have same patterns that differ in context or policies and therefore we duplicate them as in

the case of EPA1 and EPA2 that the pattern is the same (TREND) but their context is different. Another

example is the TREND operator or pattern, which might not exist in another CEP engine. In this case, a

workaround using existing building blocks or primitives needs to be established. Still, there are some

constraints and limitations in PROTON’s current language and implementation that dictated some of our

design and implementation choices. The most noticeable example is the implementation of EPA6 which

seems redundant. As a matter of fact, the most intuitive way to implement the “TREND after COUNT”

EPA was just having EPA1 coming after EPA5. However, when the TREND operator (as in all operators of

type aggregation) is satisfied, a derived event is emitted without the possibility to access the matching

set events.

3.5 Implementation of first EPN for the traffic management use case
The overarching aim of the CEP module in this use case is to detect congestions or potential congestion

situations in the Grenoble highway. To this end, a first EPN has been created with the collaboration of

the use case owner partner CNRS with the goal of having something meaningful and representative, yet

25

 D3.1 First version of event recognition and forecasting technology

doable to be achieved in the first year of the project. The outcome is an EPN consisting of seven EPAs

shown in Figure 21 and detailed in the following Sections. For the sake of simplicity we only show the

EPAs and the events flow in the network. Dotted lines represent events, other than input events, that

are either initiators (in yellow) or terminators (in red) of a context. The PROTON JSON definitions file

that comprises this EPN is provided as part of the software deliverable that accompanies this report. For

further information on the use cases please refer to D7.1 “User Requirements and Scenario Definitions”.

In the current EPN we want to fire situations in the following cases (for detailed descriptions of each EPA

see Sections 3.5.3.1-3.5.3.7)

 A Congestion (EPA2) in a specific location is building-up.

 A ClearCongestion (EPA3) at a specific location is identified.

 A PredictedCongestion, that is, a forecasted congestion is identified at a specific location (EPA4

and EPA5).

 Calculations on sensor readings are emitted to be consumed by the decision making module

(EPA6 and EPA7)

Note that for all the detections apart of EPA6, average measurements are taken (EPA1).

Figure 21: Traffic management use case initial EPN

3.5.1 Calculations of congestion, clear congestion, and “almost congestion” situations

We differentiate among three situations at a specific location using two parameters: density and speed.

A Congestion (shown in red in Figure 22) exists if the density in a specific location is above a certain

given value (density_threshold1) and the speed is below a certain given value (speed_threshold1). On

the other hand, a congestion is over (ClearCongestion, shown in green), whenever the density is below a

CongestionEPA2

(Congestion)

A
gg

re
ga

te
d

Se
n

so
rR

ea
d

OnRampFlow

Si
tu

a
ti

o
n

s

EPA1
(AvgDensityAndSpeed

PerLocation)

EPA6

(AvgOnRamp)

EPA5
(Predicted

Congestion)

EPA4
(Predicted

Trend)

PredictedTrend

EPA7
(AvgAggregatio

nOverTime

2minsAverageDensityAndSpeedPerLocation

AverageDensityAnd
SpeedPerLocation

EPA3
(Clear

Congestion)

PredictedCongestion

ClearCongestion

26

 D3.1 First version of event recognition and forecasting technology

certain given value (density_threshold2) and the speed is above a certain given value (speed_threshold2).

We emit a probabilistic PredictedCongestion situation (in yellow) in between the Congestion and the

ClearCongestion thresholds. Note that for the speed we added a new threshold (speed_threshold3) in

order to narrow the limits for a PredictedSituation, but of course, any value between speed_threshold1

and speed_threshold2, can be selected.

Figure 22: Illustrative diagram of the different traffic situations

Two main assumptions have been made:

 Density is naively calculated as flow divided by speed.

 Density values are computed first per lane and then they are aggregated to compute the

average density value per location.

 Calculations are made for a single location or sensor and not for a segment or cell (distance

between two consecutive locations).

Future versions of this application will take into account more sophisticated density calculations as well

as segments.

3.5.2 Event types

Eight event types have been defined that comprise the event inputs, outputs/derived, and situations as

shown in Figure 21. For the sake of simplicity we only show the user-defined attributes or the event

payload and not the metadata (refer to Section 2.2.1.).

Although the names of concepts in can be determined freely by the application designer in PROTON, we

use some naming conventions for the sake of clarity. We denote event types with capital letters. Built-

in/metadata attributes start with a capital letter, as well as payload attributes that hold operators values,

while payload attributes start with a lower letter. Table 3 shows the event definitions for the traffic

management EPN. Note that the problem_id attribute is not part of the raw event payload and is

intended for monitoring reasons by the decision module of the SPEEDD prototype. This module

correlates decisions made and their effect by this attribute. At this stage, we assign the location_id value

to the problem_id at the derivation step, but more complex expressions can be applied.

density_threshold2 density_threshold1

CongestionClearCongestion
Predicted

Congestion

speed_threshold1 speed_threshold2

ClearCongestionCongestion
Predicted

Congestion

speed_threshold3

27

 D3.1 First version of event recognition and forecasting technology

Note that the AggregatedSensorRead raw event includes more fields or attributes. We defined only the

ones required for pattern detection in the current EPN implementation. When running in SPEEDD

architecture, PROTON will ignore event attributes not specified in its JSON.

Table 3: Initial EPN for the traffic management use case

Event name AggregatedSensorRead

Payload location, lane, occupancy, vehicles, average_speed

Event name Congestion

Payload location, average_density, problem_id

Event name PredictedCongestion

Payload location, average_density, problem_id

Event name ClearCongestion

Payload location, problem_id

Event name OnRampFlow

Payload location, average_flow, average_speed, average_density

Event name AverageDensityAndSpeedPerLocation

Payload location, average_flow, average_density, average_ speed

Event name 2minsAverageDensityAndSpeedPerLocation

Payload location, average_flow, average_speed, average_density

Event name PredictedTrend

Payload location, problem_id

3.5.3 Event processing agents

Henceforth, we describe the EPAs in the following order: Event name; motivation; event recognition

process (following Figure 2); contexts along with temporal context policy; and pattern policies.

In the event recognition process we only show the steps that take place in the specific EPA, while the

others are greyed. For the filtering step we show the filtering expression; for the matching step we

denote the pattern variables; and for the derivation step we denote the values assignment and

calculations. Please note that for the sake of simplicity we only show the assignments that are not copy

of values (all other derived event attributes values are copied from the input events). For attributes, we

just denote their names without the prefix of ‘attribute_name.’

3.5.3.1 EPA1: AvgDensityAndSpeedPerLocation

Motivation: This EPA calculates averages of speed and vehicles to derive an average density over all the

lanes in a certain location except for on-ramp lanes, which are treated differently (see D8.1 and D5.1 for

further details).

28

 D3.1 First version of event recognition and forecasting technology

Event recognition process:

Figure 23: Event recognition process for AvgDensityAndSpeedPerLocation EPA

AverageSpeed and AverageFlow are computed variables of the AVG pattern.

Pattern policies:

Evaluation Cardinality Repeated Consumption

DEFERRED SINGLE FIRST CONSUME

Context:

Segmentation: by location_id

Initiator policy: IGNORE

Meaning: For each batch of raw events (AggregatedSensorRead) at each location, there is a derived

event for the average density and speed. As there is one batch every 15 sec, the initiator policy doesn’t

play a role in this case.

Figure 24: Context for AvgDensityAndSpeedPerLocation EPA

Event Processing Agent

within
context

filtering

AVG

deriving

lane<> “on_ramp” AND
average_speed <> -1

AggregatedSensor
Read

AverageSpeed:average_speed
AverageFlow:vehicles

AverageDensityAnd
SpeedPerLocation

average_flow:AverageFlow
average_speed:AverageSpeed
average_density:
AverageFlow/AverageSpeed

+ 14 sec

AggregatedSensorRead

AverageDensityAndSpeedPerLocation

29

 D3.1 First version of event recognition and forecasting technology

3.5.3.2 EPA2: Congestion

Motivation: To derive a congestion alert whenever the average density and speed are above and under

specific given thresholds (labeled by 1). In this case the derived event has a probabilistic value of 1,

since the congestion detected is already taking place. In our initial tests we used

density_threshold1:0.95 and speed_threshold1:45.

Event recognition process:

Figure 25: Event recognition process for Congestion EPA

Pattern policies:

Evaluation Cardinality Repeated Consumption

IMMEDIATE SINGLE FIRST CONSUME

Context:

Segmentation: by location_id

Initiator policy: IGNORE

Meaning: We open a single context for a location in order to detect an actual congestion. The context is

closed with the ClearCongestion event, i.e., the congestion passed.

Figure 26: Event recognition process for Congestion EPA

Event Processing Agent

within
context

filtering

matching

deriving

AverageDensityAnd
SpeedPerLocation

Congestion

problem_id:location_id

density > density_threshold1 AND
speed < speed_threshold1

AverageDensityAndSpeedPerLocation

ClearCongestion

Congestion

30

 D3.1 First version of event recognition and forecasting technology

3.5.3.3 EPA3: ClearCongestion

Motivation: A derived event is emitted whenever the flow is perceived as “normal”, meaning the

density and speed thresholds are in the “normal range”. In our initial tests we used

density_threshold2:0.80 and speed_threshold2:70.

Event recognition process:

Figure 27: Event recognition process for ClearCongestion EPA

Pattern policies:

Evaluation Cardinality Repeated Consumption

IMMEDIATE SINGLE FIRST CONSUME

Context:

Segmentation: by location_id

Initiator policy: IGNORE

Meaning: We open a single context for a location in order to detect when an occurring congestion or

predicted congestion goes away. To this end, the context is opened with either the Congestion or

PredictedCongestion events (the first that comes) and is closed when a ClearCongestion is detected (the

derived event also closes the open context).

Event Processing Agent

within
context

filtering

matching

deriving

density < density_threshold2 AND
speed > speed_threshold2

ClearCongestionAverageDensityAnd
SpeedPerLocation

problem_id:location_id

31

 D3.1 First version of event recognition and forecasting technology

Figure 28: Context for ClearCongestion EPA

3.5.3.4 EPA4: PredictedTrend

Motivation: The CEP run-time engine will derive a PredictedTrend event (input to the

PredictedCongestion EPA) whenever it detects an increase in the density values of at least 6 consecutive

input events. The density values are still in the “normal range” so that neither a Congestion nor a

ClearCongestion are detected. We used the value of 51 for our tests for speed_threshold3.

Event recognition process:

Figure 29: Event recognition process for PredictedTrend EPA

Pattern policies:

Evaluation Cardinality Repeated Consumption

IMMEDIATE UNRESTRICTED FIRST REUSE

Context:

Segmentation: by location_id

Initiator policy: IGNORE

Meaning: We open a single context for a location in order to detect an increasing TREND pattern. To this

end, the context is opened with the first input event that comes and is closed when either a Congestion

or ClearCongestion is detected for the same location. As we use the IMMEDIATE and UNRESTRICTED

AverageDensityAndSpeedPerLocation

ClearCongestion

ClearCongestion

PredictedCongestion

Congestion

average_density
trendNumber>4

within
context

filtering

deriving

PredictedTrendAverageDensityAnd
SpeedPerLocation

problem_id:location_id
Certainty:Sigmoid(1,6,trend.count)

(increasing)
TREND

((average_density < density_threshold1) AND
(average_density >= density_threshold2))
AND
((average_speed > = speed_threshold1) AND
(average_speed < speed_threshold3))

32

 D3.1 First version of event recognition and forecasting technology

policies, we derive a PredictedTrend event for each TREND encountered; with increasing Certainty value

if the buildup continues (density continues to rise and speed continues to decrease).

Figure 30: Context for PredictedTrend EPA

3.5.3.5 EPA5: PredictedCongestion

Motivation: The goal is to derive a PredictedCongestion event, that is, we believe there is a chance that

a congestion will take place in the near future. We use the TREND pattern from EPA4 as input and derive

an event that gets the uncertainty of the last PredictedTrend in the pair of input events (see repeated

policy below). We have this EPA in addition to EPA4 so that we can combine different policies and derive

events with payload attributes generated from events in the matching set (EPA4 is a TREND operator

with no access to the matching set events, see 3.5.5).

Event recognition process:

Figure 31: Event recognition process for PredictedCongestion EPA

Pattern policies:

We denote AverageDensityAndSpeedPerLocation as e1 and PredictedTrend as e2.

Evaluation Cardinality Repeated Consumption

IMMEDIATE UNRESTRICTED e1: OVERRIDE
e2: LAST

e1: REUSE
e2: CONSUME

AverageDensityAndSpeedPerLocation

PredictedTrend

ClearCongestion

Congestion

PredictedTrend

Event Processing Agent

within
context

filtering

deriving

AverageDensityAnd
SpeedPerLocation;

PredictedTrend
ALL PredictedCongestion

Certainty:PredictedTrend.Certainty

33

 D3.1 First version of event recognition and forecasting technology

Context:

Segmentation: by location_id

Initiator policy: IGNORE

Meaning: The context is opened with the first AverageDensityAndSpeedPerLocation input event that

comes and is closed when either a Congestion or ClearCongestion is detected for the same location.

Whenever a PredictedTrend input event comes, a PredictedCongestion derived event is emitted. As we

use the IMMEDIATE and UNRESTRICTED policies, we can derive more than one event. We use the LAST

policy, so that the last PredictedTrend event is used for the ALL pattern (assuming that the probabilities

are going up as we have more increasing densities).

Figure 32: Context for PredictedCongestion EPA

3.5.3.6 EPA6: AvgOnRamp

Motivation: To derive average values of on-ramp lanes every two minutes for the decision module.

Event recognition process:

Figure 33: Event recognition process for AvgOnRamp EPA

AverageDensityAndSpeedPerLocation;
PredictedTrend

ClearCongestion

CongestionPredictedCongestion

PredictedCongestion

Event Processing Agent

within
context

filtering

deriving

lane==“on_ramp”

AggregatedSensor
Read

AverageSpeed:average_speed
AverageFlow:vehicles

average_flow:AverageFlow
average_speed: AverageSpeed
average_density: AverageFlow/AverageSpeed

OnRampFlowAVG

34

 D3.1 First version of event recognition and forecasting technology

Pattern policies:

Evaluation Cardinality Repeated Consumption

DEFERRED SINGLE FIRST CONSUME

Context:

Segmentation: by location_id

Initiator policy: ADD

Meaning: In each location, for each input event (sliding/overlapping temporal windows) we open a

temporal context and perform average calculations. The temporal contexts are closed after two minutes.

Figure 34: Event recognition process for AvgOnRamp EPA

3.5.3.7 EPA7: AvgAggregationOverTime

Motivation: To derive average values for all lanes every two minutes for the decision module.

Event recognition process:

Figure 35: Event recognition process for AvgAggregationOverTime EPA

Pattern policies:

AggregatedSensorRead

+ 2 min

OnRampFlow
OnRampFlow

+ 2 min
OnRampFlow

+ 2 min

Event Processing Agent

within
context

filtering

AVG

deriving
average_flow: AverageFlow
average_speed: AverageSpeed
average_density: AverageFlow/AverageSpeed

AverageDensityAnd
SpeedPerLocation

2minsAverageDensi
tyAndSpeedPerLoca

tion

AverageSpeed:average_speed
AverageFlow:vehicles

35

 D3.1 First version of event recognition and forecasting technology

Evaluation Cardinality Repeated Consumption

DEFERRED SINGLE FIRST CONSUME

Context:

Segmentation: by location_id

Initiator policy: ADD

Meaning: In each location, for each input event (sliding/overlapping temporal windows) we open a

temporal context and perform average calculations. The temporal contexts are closed after two minutes.

Figure 36: Event recognition process for AvgAggregationOverTime EPA

3.5.4 Uncertainty

Similar to the fraud use case, our implemented EPN and first traffic management use case event driven

application copes with uncertainty that stems from the input events and from the derived events.

Note that the derived events in EPAs 1, 2, 3, 6, and 7 have a certainty value equals to 1. EPAs 1, 6, and 7

are calculations on input events required by the decision module. EPA2 measures a congestion situation

while is already taking place, while EPA3 detects that the congestion is over, again when it already takes

place.

3.5.4.1 Uncertainty in the derived event

In this case, the input events are certain (a sensor reading event happens) but the derived event is not

certain (e.g., the fact that we have 5 sensor readings that show an increase in the density, doesn’t

necessarily imply there will be a traffic congestion for sure). EPA4 belongs to this category of cases. As in

the fraud use case, we apply the Sigmoid function to calculate the probability of the occurrence of a

derived event.

3.5.4.2 Uncertainty in the input event(s)

When the input events contain uncertainty then the pattern becomes uncertain. EPA5 belongs to this

category. In EPA5 the uncertainty value in the input event is propagated to the derived event in the ALL

pattern.

AverageDensityAndSpeedPerLocation

+ 2 min

2minsAverageDensityAndSpeed
PerLocation

+ 2 min + 2 min

2minsAverageDensityAndSpeed
PerLocation

2minsAverageDensityAndSpeed
PerLocation

36

 D3.1 First version of event recognition and forecasting technology

3.5.5 Summary

The first EPN for the traffic management use case (see Figure 21) includes seven EPAs, one raw event,

five situations (one probabilistic and four deterministic). As the same as for the fraud detection, our

implementation relies on PROTON’s building blocks and capabilities and it might be possible that the

same application will look differently when implemented in another CEP engine that uses different

building blocks. There are also constraints that PROTON programmatic language and implementation

imposes when designing and building a new event-driven application. As in the case of the fraud

detection EPN, we need EPA5 so we can derive an event that includes payload values of the TREND

operator matching set (EPA4).

4 Performance evaluation
In addition to functional tests that assured the results received are in accordance to the expected

outputs in terms of correctness and functionality, tests have been run to assess the throughput and

latency of the two EPNs for our two use cases applications.

The machine used for the tests purposes was a Lenovo Thinkpad with the following characteristics:

The tests were performed on Oracle JRE v 1.6.0_39, with the heap space allocated as 40MB initially and

allowed to grow to max 1 GB, with a maximum PermGen size of 128MB.

The tests were carried out under the following constraints which influenced (and eventually

deteriorated) the performance:

 The Thinkpad that served for the tests also run additional heavy load programs in parallel to the

tests (e.g., IBM Lotus Notes), due to constraints of the infrastructure for performance

measurement.

 The raw events and derived events were read from an input file and were written to an output

file on the same machine, while the event processing application was running, and at the same

JVM process Massive I/O and use of process memory can significantly affect the performance,

especially during throughput testing.

 Maximum CPU load reached during testing was 40%. We believe that tuning the configuration

so that CPU reaches the max load, while playing with CPU affinity to allow priority for the event

processing and to decrease amount of preempts, can significantly improve performance.

 Lack of system warm-up. Performing warm-up for JVM compiler optimization procedures will

give results closer to real-life performance.

37

 D3.1 First version of event recognition and forecasting technology

Considering all of the above, we treat the current performance results as an initial indication of a lowest

bound for performance metrics for the CEP component. We believe we will get more accurate metrics

using suitable infrastructure and system tuning, and running the CEP tool in a distributed manner on top

of STORM.

The following Sections describe our experiments and results.

4.1 Throughput

4.1.1 Datasets

The throughput was calculated using a dataset consisting of 10,000 real data raw events. For the traffic

management use case we used the September 2014 input and for the fraud use case the anonymized

data, both provided by the use cases partner.

4.1.2 Throughput results for the fraud detection use case

In order to test throughput the entire EPN has been applied (see Figure 5) with maximum load. We

denote by start_time the detection time of the first input event and by end_time the detection time of

the last derived event. We calculated the time between the injection of the first raw event and the

derivation of the last raw event. Therefore, the throughput measures the amount of events processed

through the entire EPN divided by (start_time – end_time).

Ten runs of 10,000 raw events each were carried out. The mean throughput over these runs was 1.948

milliseconds per event, i.e., 513 events per second.

4.1.3 Throughput results for traffic management use case

In order to test throughput the entire EPN has been applied (see Figure 21) with maximum load. We

denote by start_time the detection time of the first input event and by end_time the detection time of

the last derived event. We calculated the time between the injection of the first raw event and the

derivation of the last raw event. Therefore, the throughput measures the amount of events processed

through the entire EPN divided by (start_time – end_time).

Ten runs of 10,000 raw events each were carried out. The mean throughput over these runs was 1.73

milliseconds per event, i.e., 575 events per second.

4.2 Latency

4.2.1 Datasets

The latency was measured with simulated datasets, each 10,000 raw events. We haven’t used real-data

since we tested specific patterns and needed to be sure that these are represented enough in the

datasets. For each use case, we selected one “predictive pattern” (i.e., the derived event is probabilistic

or has a certainty value < 1) and one “detection pattern”, i.e., the derived event has a certainty value = 1.

When discussing predictive patterns, we can also relate to the predictive horizon, meaning, to “how far”

in the future the predictive event can hold.

38

 D3.1 First version of event recognition and forecasting technology

4.2.2 Latency results for the fraud detection use case

4.2.2.1 First case: IncreasingAmounts

In this scenario, EPA2 (Increasing Amounts) latency has been tested (see Figure 5). This EPA tests for a

TREND pattern of at least two consecutive Transactions with increasing amounts. The latency was

calculated as the elapsed time between the detection time of the last Transaction event in the matching

set (at the moment the input event is injected into CEP engine) and the detection time of the

IncreasingAmounts derived event.

An overall of 10,000 events have been processed that included around the 70% of the pattern

satisfaction.

The forecasting horizon in this case depends mainly on the fraud given probability (assumed to be 0.01)

and the TREND threshold (amount of events in the matching set). These can be configured to better fit

the real data.

The latency mean found was: 110.8 milliseconds and the 90% percentile 118 milliseconds.

4.2.2.2 Second case: SequenceFraud

In this scenario, EPA7 (Cloned Card) latency has been tested (see Figure 5). This EPA detects two

consecutive Transactions with the same credit card (present) at different locations. The latency is

calculated from the raw event injection until the sequence pattern detection.

Note that the performance of a SEQUENCE pattern is heavily influenced by the policies undertaken,

specially the repeated policy (see Section 2.1.4), with worst performance for the every policy which tests

all possible combinations of the participating events. In our case, we apply the first and override options

meaning we have a 1:1 match and no iteration over possible other combinations.

The input file comprises 10,000 raw events, with around 10% of events that satisfy the SEQUENCE

pattern.

The latency mean found was: 112 milliseconds and the 90% percentile 125 milliseconds.

4.2.3 Latency results for traffic management use case

4.2.3.1 First case: PredictedTrend

In this scenario, two EPAs have been tested (see Figure 21), EPA1 (AvgDensityAndSpeedPerLocation) and

EPA4 (Predicted Trend), that is, we derive the PredictedTrend event with a probability for a congestion.

EPA1 receives the raw events (AggregatedSensorRead) as input events and emit the average measures

(AverageDensityAndSpeedPerLocation) used then by EPA4 for the TREND pattern (at least five instances

with increasing density values). The context window was shortened to 3 min for practicality. Our data

set included around a 1% of TREND detection.

Latency was measured from the moment the trend situation happens (5th occurrence of

AverageDensityAndSpeedPerLocation with increasing density enters the system) until PredictedTrend is

39

 D3.1 First version of event recognition and forecasting technology

derived. Therefore, the detection time of the AverageDensityAndSpeedPerLocation event was

subtracted from the detection time of the PredictedTrend event.

An overall of 10,000 raw events have been processed.

Regarding the forecasting horizon, the PredictedCongestion event is fired after 5 successive average

calculations with increasing density. Each average calculation is based on input readings every 15

seconds. We consider a traffic buildup from the moment events start entering the matching set. In our

EPN, it takes 75 seconds to detect and forecast a building congestion (from traffic buildup until

congestion). The amount of time between a prediction and an actual congestion heavily depends on the

thresholds values for the buildup. Note that these are configurable.

The latency mean found was: 110.5 milliseconds and the 90% percentile 110 milliseconds.

4.2.3.2 Second case: Congestion and ClearCongestion

In the second scenario, two EPAs have been tested (see Figure 21), EPA1

(AvgDensityAndSpeedPerLocation), EPA2 (Congestion) and EPA3 (ClearCongestion). In this scenario, the

AggregatedSensorRead raw events pass through EPA1 in which averages are calculated and from which

AverageDensityAndSpeedPerLocation derived events serve as input for detect either a clearance or an

appearance of congestion. The dataset contained 10,000 raw events.

The latency is measured as the elapsed time between the detection time of

AverageDensityAndSpeedPerLocation to the detection time of Congestion and ClearCongestion events.

The percentage of detection within the dataset was around 5%.

The latency mean found was 101.253 milliseconds and the 90% percentile 102 milliseconds.

4.3 Performance evaluation results summary
Performance evaluation has been made on two criteria: throughput and latency. These have been

measured on partial and complete current EPNs of the two use cases with simulated as well as with real

raw events.

Our main objective in the project is to improve the current situation with the use of SPEEDD technology.

In the scope of this first deliverable related to the CEP component, we have just made a first step

towards this direction. Any attempt to generalize over the results so far will be somehow missing the

main goal and impractical due to several reasons:

 The EPNs are still initial and partial, not covering all possible patterns. The reality that serves as

benchmark is much more complex and contains more patterns that our component will simply

miss and not detect at this stage.

 Improvements stem from the overall system, especially from the interaction and synergy

between the CEP and decision making components. Evaluation in isolation might hurt the

potential overall performance achieved.

40

 D3.1 First version of event recognition and forecasting technology

 In the fraud detection use case, the Feedzai partner owns a dedicated operational system to

detect fraud. Applying a CEP generic research prototype to “compete” with it in terms of

accuracy of results (false positives and false negatives) seems impractical. The benefit should be

associated with the fact that potential fraudulent transactions can be detected beforehand.

 On the other hand, in the traffic management use case, there is no real time operational system

at all; therefore any improvement will be evident.

Still, we believe that the results so far can give an indication of what can be achieved and be a lower

bound of performance. As aforementioned, the tests have been carried out on a single machine running

other heavy processes in parallel. The results (both the throughput and the latency) can be significantly

improved if running on a machine with a clean state, multiple cores, and when tuning for performance.

In addition, the throughput can be further beneficiary when running on a distributed environment like

STORM with N nodes (refer to D3.1). Assuming the contexts distributions are more or less uniform, the

throughput can be approximately the throughput on a single machine*N (minus communication and

infrastructure overheads)

5 Summary and future steps
In this document, we present the first version of the complex event module under uncertainty in

SPEEDD. The report comprises the extensions introduced so far in the event processing component

tooling to cope with uncertainty driven by both the use cases and the decision module requirements. A

detailed description of the first event driven applications for the two use cases in the project is given.

We also show preliminary evaluation results of the proposed technologies.

The inclusion of uncertainty aspects, mainly manifested in the run-time module, impacts all levels of the

architecture and logic of an event processing engine. Even at this stage, the current implemented EPNs

possess a high level of sophistication and complexity. In order to cope with uncertainty, the following

extensions have been implemented in PROTON:

• New built-in attributes have been added (Certainty)

• Operands types have been extended to support distributions (e.g., Sigmoid)

• Additional built-in functions have been added (e.g., CDF)

• Operators have been extended to support events with probabilistic attribute values (e.g.,

COUNT and TREND)

Important to note, these are not ad-hoc extensions to support specific use cases requirements, but

generic building blocks that make PROTON first-of-a-kind CEP engine capable to deal with uncertainty

and to derive forecasted events.

41

 D3.1 First version of event recognition and forecasting technology

In the next months we plan to continue extending the support for uncertainty driven by the use cases

requirements. This will be reflected in new patterns and the presence of uncertainty in the input or data

sets (e.g., missing or erroneous attribute values). Advanced event processing networks will reflect:

• The addition of new patterns

• The fine tuning of the entire networks including different thresholds values

• Other probabilistic functions in addition to Sigmoid.

• In the traffic management use case, taking into account the following aspects:

o Noise in the input data, e.g., taking into account the “-1” that are currently filtered out

(the -1 indicates no speed value calculation is available).

o Calculations per cell, not per sensor/location; on-ramp lanes;

o Derivation of more fine-tuned events, such as “heavy/medium/low” congestion.

o More sophisticated formulae for density.

o More sophisticated values for problem_id instead of location_id

Our next reports at M22 and M32 will present the advances made in the coming months.

6 References

[1]. Etzion O. and Niblet P. Event processing in action. Manning, 2010

[2]. Proton user guide and programmer guide available at: https://forge.fi-
ware.org/plugins/mediawiki/wiki/fiware/index.php/CEP_GE_-
_IBM_Proactive_Technology_Online_User_and_Programmer_Guide

[3]. Open specification (REST api) available at: http://forge.fi-

ware.org/plugins/mediawiki/wiki/fiware/index.php/Complex_Event_Processing_Open_RESTful

_API_Specification

[4]. Installation and administration guide, available at: https://forge.fi-
ware.org/plugins/mediawiki/wiki/fiware/index.php/CEP_GE_-
_IBM_Proactive_Technology_Online_Installation_and_Administration_Guide

[5]. Toshniwal A., Taneja S., Shukla A., Ramasamy K., Patel J. M., Kulkarni S., Jackson J., Gade K., Fu

M., Donham J., Bhagat N., Mittal S., Ryaboy D. Storm@twitter. SIGMOD Conference 2014, pp.

147-156.

[6]. Kreps J., Narkhede N., and Rao J. Kafka: A distributed messaging system for log processing. In

Proceedings of 6th International Workshop on Networking Meets Databases (NetDB), Athens,

Greece, 2011.

[7]. Artikis, A. Etzion, O. Feldman, Z. and Fournier, F. Event Processing under Uncertainty. DEBS
2012.

[8]. Wasserkrug, S. Gal, A. and Etzion, O., A model for reasoning with uncertain rules in event
composition. Proceedings of the 21st Conference Annual Conference on Uncertainty in Artificial
Intelligence (UAI). 2005.

[9]. Wasserkrug, S. Gal, A. Etzion, O. and Turchin, Y., Efficient processing of uncertain events in rule-
based systems. IEEE Transactions on Knowledge and Data Engineering. 2012.

https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/CEP_GE_-_IBM_Proactive_Technology_Online_User_and_Programmer_Guide
https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/CEP_GE_-_IBM_Proactive_Technology_Online_User_and_Programmer_Guide
https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/CEP_GE_-_IBM_Proactive_Technology_Online_User_and_Programmer_Guide
https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/CEP_GE_-_IBM_Proactive_Technology_Online_User_and_Programmer_Guide
http://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/Complex_Event_Processing_Open_RESTful_API_Specification
http://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/Complex_Event_Processing_Open_RESTful_API_Specification
http://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/Complex_Event_Processing_Open_RESTful_API_Specification
https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/CEP_GE_-_IBM_Proactive_Technology_Online_Installation_and_Administration_Guide
https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/CEP_GE_-_IBM_Proactive_Technology_Online_Installation_and_Administration_Guide
https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/CEP_GE_-_IBM_Proactive_Technology_Online_Installation_and_Administration_Guide

42

 D3.1 First version of event recognition and forecasting technology

[10]. Engel Y. and Etzion. O. Towards Proactive Event-Driven Computing. DEBS 2011, 125-1136.

[11]. Engel Y., Etzion. O., and Feldman. Z., A Basic Model for Proactive Event-Driven Computing. DEBS

2012, 107-118.

[12]. Hastie T., Tibshirani R., and Friedman J., The elements of statistical learning. Vol. 2. No. 1. New

York: Springer, 2009.

