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Executive Summary  
At the heart of the SPEEDD prototype relies the event processing component. Its role is to detect events 

and derive situations to feed the decision module so proactive actions can be taken. To this end, the 

complex event processing component needs to deal with uncertainty in the input as well as the output 

events. This document is the first part of the Deliverable 3.1 “First version of event recognition and 

forecasting technology” and its purpose is to present the advancements made in the complex event 

processing tooling of SPEEDD to cope with uncertainty.  

The inclusion of uncertainty aspects, mainly manifested in the run-time module, impacts all levels of the 

architecture and logic of an event processing engine. Even at this stage, the current implemented 

applications possess a high level of sophistication and complexity. The extensions made in the complex 

event processing engine include the addition of new built-in attributes and functions, the support of 

new types of operands, and the support of the event processing patterns to cope with all these. 

Although these extensions are driven by the use cases requirements, these have not been implemented 

ad-hoc, but as generic building blocks in the complex event processing programmatic language making it 

a first-of-a-kind event processing engine capable to deal with uncertainty and to derive forecasted 

events. 
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1 Introduction 
    

1.1 Purpose and scope of the document 
Work Package 3 (WP3) “Real-Time Event Recognition and Forecasting under Uncertainty” deals with all 

the developments around event processing technologies under uncertainty. This report is the first 

version of SPEEDD (Scalable ProactivE Event-Driven Decision) event recognition and forecasting 

technology and it includes first results for T3.2 (event recognition under uncertainty) and T3.3 (event 

forecasting under uncertainty), and the first version of the event recognition and forecasting component 

(software). This report presents the extensions and developments made with relation to the project two 

use cases: the traffic management use case (see D7.1 “User Requirements and Scenario Definitions”) 

and the credit card fraud use case (see D8.1 “User Requirements and Scenario Definitions”).  Two 

updated versions of this report will be submitted at M22 and M32 of the project to describe further 

developments achieved.  

This report covers all aspects of the event driven run-time module in SPEEDD. Basically, the report 

describes the extensions to the engine (both in the user interface and in the run-time) and the 

implementation for first year of the CEP (Complex Event Processing) component applications. A 

complementary report led by partner NCSR describes the first results for T3.1 (machine learning for 

event definition construction) which covers the off-line aspects of the event-driven under uncertainty. 

The main role of the CEP component is to feed the decision making component with meaningful events 

for its decision making process (see D6.1 “The Architecture Design of the SPEEDD prototype”). The 

developments made in the CEP engine are driven by requirements imposed by both the use cases and 

the decision making component. In other words, the use cases and decision making process 

requirements dictate the extensions to be made in the run-time engine.  

This report is structured as follows: Section 2 provides some background on CEP and terminology used 

throughout this report. Section 3 describes the CEP component in SPEEDD, including extensions made to 

cope with uncertainty both in the user interface and run-time engine, as well as the implementation of 

the two use cases. Section 4 presents initial performance outcomes of our implementations. We 

conclude the report with summary and future steps. 

1.2 Relationship with other documents 
At the heart of the SPEEDD prototype resides the complex event processing component, therefore, this 

report is strongly related to D6.1 “The Architecture Design of the SPEEDD prototype”. The requirements 

for the CEP engine are dictated from the use cases in the project, thus, this report is also strongly related 

to system requirements for the Proactive Traffic Management use case described in D8.1 and for the 

Proactive Credit Card Fraud Management described in D7.1. The main goal of the CEP component is to 

derive forecasted events that feed the decision making component so actions can be taken before an 
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undesired event (such as a congestion situation in the high way) takes place. Therefore our work is also 

related to D4.1 “First version of real-time decision-making technology”.  

2 Complex event processing background 
Each complex event processing engine uses its own terminology and semantics. We follow the 

semantics presented in Etzion’s and Niblet’s book [1]. We describe below some main terms used in our 

work for the sake of clarity. We use the IBM Proactive Technology Online (PROTON) research asset as 

the complex event processing engine in SPEEDD (see D6.1). This engine has been released as open 

source as an outcome of the FI-WARE project (being Proton the CEP Generic Enabler in the FI-WARE 

platform1) and it is extended to cope with predictive capabilities in the scope of the SPEEDD project. 

2.1 Terminology 
Henceforth we briefly present main concepts and building blocks in our terminology. For further details 

refer to [1]. 

2.1.1 Event types 

Generally speaking, an event is an occurrence within a particular system or domain; it is something that 

has happened, or is contemplated as having happened in that domain. The word “event” is also used to 

mean a programming entity that represents such an occurrence in a computing system. In the latter 

definition, an event is an object of an event type. Events are actual instances of the event types and 

have specific values. For example, the event "today at 10 PM a customer named John Doe made a new 

deposit to his bank account”  is an instance of the Transaction event type. An event type specifies the 

information that is contained in its event instances by defining a set of attributes. The event attributes 

are grouped into the header or metadata (e.g., the occurrence time of the event instance) and the 

payload (specific information about the event, e.g., customer name).  

We relate to the following event types: 

A raw event is an event that is introduced into an event processing system by an event producer (an 

entity at the edge of an event processing system that introduces events to the system). An example of a 

raw event is a Cash deposit into a bank account. 

A derived event is an event that is generated as a result of event processing that takes place inside the 

event processing system. An example is that a Large cash deposit has been made into a bank account. 

A situation is a derived event that is emitted outside the event processing system and consumed by at 

least one consumer (an entity at the edge of an event processing system that receives events from the 

system). An example is a Suspicious bank account. 

                                                           
1 https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Architecture 
 

https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Architecture
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2.1.2 Context 

Context is a named specification of conditions that groups event instances so they can be processed in a 

related way. While there exist several context dimensions, in this report we employ the two most 

commonly used dimensions (in the future we might enlarge the set of context types, depending on the 

scenarios requirements): temporal and segmentation-oriented. A temporal context consists of one or 

more time intervals, possibly overlapping. Each time interval corresponds to a context partition, which 

contains events that occur during that interval. A segmentation-oriented context is used to group event 

instances into context partitions based on the value of an attribute or collection of attributes in the 

instances themselves. As a simple example, consider a single stream of input events, in which each 

event contains a customer identifier attribute. The value of this attribute can be used to group events so 

there is a separate context partition for each customer. Each context partition contains only events 

related to that customer, so the behaviour of each customer can be tracked independently of the other 

customers. A composite context is a context that is composed from two or more contexts, known as its 

members. The set of context partitions for the composite context is the Cartesian product of the 

partition sets of the member contexts 

2.1.3 Event Processing Network (EPN) 

An Event Processing Network (EPN) is a conceptual model, describing the event processing flow 

execution. An EPN comprises a collection of Event processing Agents (EPAs), event producers, events 

and consumers (Figure 1). The network describes the flow of events originating at event producers and 

flowing through various event processing agents to eventually reach event consumers. For example, in 

Figure 1, events from Producer 1 are processed by Agent 1. Events derived by Agent 1 are of interest to 

Consumer 1 but are also processed by Agent 3 together with events derived from Agent 2. Note that the 

intermediary processing between producers and consumers in every installation is made up of several 

functions and often the same function is applied to different events for different purposes at different 

stages of the processing.  

 

Figure 1: Illustration of an event processing network 

2.1.3.1 Event Processing Agent (EPA) 

An Event Processing Agent (EPA) is a component that, given a set of input/incoming events within a 

context, applies some logic for generating a set of output/derived events. An EPA can apply different 

event patterns to detect specific relations among the input events.  

An EPA performs three logical steps, a.k.a pattern matching process or event recognition (see Figure 2). 

Please note that all three steps are optional but at least one must be done inside an EPA. 

Event 
Producer 1

Event 
Producer 2

Event 
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Event 
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 The filtering step, in which relevant events from the input events are selected for processing 

according to the filter conditions. The output of this step is a set of participant events. 

 The matching step that takes all events that passed the filtering and looks for matches between 

these events, using an event processing pattern or some other kind of matching criterion. The 

output of this step is the matching set.  

 The derivation step that takes the output from the matching step and uses it to derive the 

output events by applying derivation formulae.  

 

Figure 2: Event recognition process in an EPA 

An event pattern is a template specifying one or more combinations of events. Given any collection of 

events, if it’s possible to find one or more subsets of those events that match a particular pattern, it can 

be said that such a subset satisfies the pattern. Some common examples of patterns applied in our 

scenarios:  

 Sequence, means that at least one instance of all participating event types must arrive in a 

specified order for the pattern to be matched. 

 Count, means that the number of instances in the participant event set satisfies the pattern’s 

number assertion. 

 All, means that at least one instance of all participating event types must arrive for the pattern 

to be matched; the arrival order in this case is immaterial. 

 Trend, events need to satisfy a specific change (increasing or decreasing) over time of some 

observed value; this refers to the value of a specific attribute or attributes.  

 Absence, a specified event(s) must not occur within a predefined time window. The matching 

set in this case is empty. 

 Average (AVG), means that the value of a specific attribute, averaged over all participant events, 

satisfies the average threshold assertion. 

Event Processing Agent

Incoming/input 
events

Derived/output 
events

within 
context

filtering

matching
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2.1.4 Pattern policies 

A pattern policy is a named parameter that disambiguates the semantics of the pattern and the pattern 

matching process. Pattern policies fine-tune the way the pattern detection process works. Proton 

supports five types of policies: 

Evaluation policy – when the matching sets are produced? The EPA can either generate output 

incrementally (in this case the evaluation policy is called Immediate) or at the end of the temporal 

context (called Deferred).  

Cardinality policy – how many matching sets are produced within a single context partition? Cardinality 

policy helps limiting the number of matching sets generated, and thus the number of derived events 

produced. The policy type can be single, meaning only one matching set is generated; or unrestricted, 

meaning there are no restrictions on the number of matching sets generated. 

Repeated/Instance Selection type policy – what happens if the matching step encounters multiple 

events of the same type? The override repeated policy means that whenever a new event instance is 

encountered and the participant set already contains the required number of instances of that type, the 

new instance replaces the oldest previous instance of that type. The every repeated policy means that 

every instance is kept, meaning all possible matching sets can be produced. First means that every 

instance is kept, but only the earliest instance of each type is used for matching. Last is the same as first, 

but the latest instance of each type is used for matching.  

Consumption policy – what happens to a particular event after it has been included in the matching set? 

Possible consumption policies are consume, meaning each event instance can be used in only one 

matching set; and reuse, meaning an event instance can participate in an unrestricted number of 

matching sets. 

Policy relevance can be dictated by the event pattern. For example, the evaluation policy for an absence 

pattern is always deferred (as we are testing the existence of an event instance for a specified temporal 

context). Also, not all possible policies combinations are meaningful. For example, the choice of 

consumption policy is irrelevant if the cardinality policy is single, because that means that the matching 

step runs only once. 

2.1.5 Context initiator policies 

A temporal context starts with an initiator and ends with a terminator. An initiator can be an event, 

system startup, or absolute time. A terminator ends the temporal context. The terminator can be an 

event, relative expiration time, an absolute expiration time, or “never ends”, i.e. the temporal context 

remains open until engine shutdown. 

A context initiator policy tunes up the semantics for temporal contexts in which the context initiator is 

determined by an event. A context initiator policy defines the behaviours required when a window has 

been opened and a subsequent initiator event is detected. The options are: add, a new window is 

opened alongside the existing one; or ignore, the original window is preserved.  
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2.2 Complex event processing tooling 
In the SPEEDD project the complex event processing component is built on and extends the IBM 

Proactive Technology Online (PROTON) research asset. This asset has become open-source2 in the scope 

of the FI-WARE FI-PPP project3.  Documentation regarding the CEP open source asset can be found in [2], 

[3], and [4]. 

PROTON comprises a run-time engine, producers, and consumers with the characteristics and 

capabilities described in the Background Section (Section 2). Specifically, it includes an integrated run-

time platform to develop, deploy, and maintain event-driven applications using a single programming 

model. 

2.2.1 Event attributes 

Every event instance has a set of built-in attributes (metadata). PROTON employs the following 

attributes in the event type's metadata:  

 Name – of the event type. 

 OccurenceTime – a timestamp attribute, which we expect the event source to fill in as the 

occurrence time of the event. If left empty, this equals the detectionTime attribute value.  

 DetectionTime – a timestamp attribute that records the time the CEP engine detected the event. 

The time is measured in milliseconds, specifying the time difference between the current 

machine time at the moment of event detection and midnight, January 1, 1970 UTC.  

 EventId – a unique string identification of the event, which can be set by the event source to 

match the asynchronous output for the event. 

 EventSource – holds the source of the event (usually the name of event producer). 

The above built-in attributes can be used in an expression in the same manner as user-defined attributes. 

User defined attributes can be added to the event class by defining their types. If the attribute is an 

array, its dimension should be specified.   

2.2.2 PROTON interfaces 

PROTON standalone runtime engine has three main interfaces with its environment as depicted in 

Figure 3. 

1. Input adapters for getting incoming events 

2. Output adapters for sending derived events 

3. CEP application definition (build time or authoring tool) 

                                                           
2 Link to the open source: https://github.com/ishkin/Proton 
3 http://www.fi-ware.org/ 

https://github.com/ishkin/Proton
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The application definitions, i.e. the EPN, are written by the application developer during the build-time. 

The definitions output in JSON (JavaScript Object Notation) format, is provided as configuration to the 

CEP run-time engine. At run-time, the standalone CEP engine receives incoming events through the 

input adapters, processes these incoming events according to the definitions, and sends derived events 

through the output adapters (see Figure 3).  

 

Figure 3: PROTON interfaces 

2.2.3 Input and output adapters 

As aforementioned, the definitions of the producers and consumers are specified during the application 

build-time and are translated into input and output adapters during execution time in the standalone 

CEP engine. The physical entities representing the logical entities of producers and consumers in 

PROTON are adapter instances.  For each producer an input adapter is defined, which defines how to 

pull the data from the source resource and how to format the data into PROTON's object format before 

delivering it to the run-time engine. The adapter is environment-agnostic, but uses the environment-

specific connector object, injected into the adapter during its creation, to connect to PROTON runtime. 

In the distributed implementation (on top of STORM [5]) where PROTON runtime is just one part of the 

general architecture, the communication with the CEP engine is done via STORM communication 

channels. Therefore, Proton receives STORM tuples as input and emits STORM tuples as output. Each 

tuple consists of the name of the event type, and a Map of the event attributes. Therefore, in this case 

the adapters are not employed. For more elaborated specification of this mechanism see D6.1. 

In the trials carried out to test the use cases implementation (see Sections 3.4 and 3.5) we use a CSV file 

for input and output. The input file contains simulated data using the same schema that real-data in 

order to test the correctness of the EPN defined for the use cases. In the prototype demo, we use Kafka 

[6] as the event bus as described in the architecture deliverable (D6.1). 
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2.2.4 PROTON definitions 

The CEP application definitions file can be created in three ways: 

1. Build-time user interface – By this, the application developer creates the building blocks of the 

application definitions. This is done by filling up forms without the need to write any code. The 

file that is generated is exported in a JSON format to the CEP run-time engine.  

2. Programming – The JSON definitions file can alternatively be generated programmatically by an 

external application and fed into the CEP run-time engine. 

3. Manually – The JSON file is created manually and fed into the CEP run-time engine. 

The created JSON file comprises the following definitions: 

 Event types – the events that are expected to be received as input or to be sent as output. An 

event type definition includes the event name and a list of its attributes.  

 Producers – the event sources and the way PROTON gets events from those sources. 

 Consumers – the event consumers and the way they get derived events from PROTON. 

 Temporal contexts – time window contexts in which event processing agents are active. 

 Segmentation contexts – semantic contexts that are used to group several events to be used by 

the EPAs. 

 Composite contexts – grouping together several different contexts. 

 Event processing agents – patterns of incoming events in specific context that detect situations 

and generate derived events. An EPA includes most of the following general characteristics:  

o Unique name 

o EPA type (operator). For each operator, different sets of properties and operands are 

applicable. 

o Context 

o Other properties such as condition 

o Participating events 

o Segmentation contexts 

o Derived events 

The JSON file that is created at build-time contains all EPN definitions, including definitions for event 

types, EPAs, contexts, producers, and consumers. At execution, the standalone run-time engine accesses 

the metadata file, loads and parses all the definitions, creates a thread per each input and output 

adapter, and starts listening for events incoming from the input adapters (producers) and forwards 

events to output adapters (consumers). 
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For the distributed implementation on top of STORM, an input Bolt serves the same function as input 

adapter, and the derived events are passed as STORM tuples to the next stage in the SPEEDD topology 

processing (see D6.1).  

2.2.5 Expressions in PROTON 

When building an event processing application, we sometimes need to set values to attributes or 

properties. We do so by writing expressions. These expressions are tested at build-time and evaluated at 

runtime by the PROTON EEP (Expandable Expression Parser) 

An expression can be any combination of these: 

 Constant (5, true, false, "silver", …) 

 Field (<EventName>.<EventAttribute>) 

 Built-in attribute (detectionTime, count, …) and built-in aggregation attributes (sum, max, …) 

 Operator (+, -, =, …) 

 Segmentation context (segmentationContext.CustomerKey) 

 Built-in function (arrayContains(a,v), distance(x1,y1,x2,y2), …)  

Examples: 

Max(DayStart.InitialStockLevel,0) 

if CustomerRating="gold" then "approve" else "reject" endif 

Examples of built-in functions:  

 Max – Max(a,b,c) returns the maximum number among the arguments. 

 Min – Min(x,100) returns the minimum number among the arguments. 

 Average – Average(x,y,z,t) returns the average number of the arguments. 

 Modulo – Mod(x,y) returns the remainder when dividing x by y. 

 Round – Round(x) returns the closest integer value to x. 

 Absolute – Abs(x) returns the absolute value of x. 

 CompareTo – CompareTo(str1,str2) compares two strings lexicographically. The result is a  

negative integer if str1  lexicographically precedes str2. The result is a positive integer if str1 

lexicographically follows the str2. The result is zero if the strings are equal 

 Distance – Distance(x1,y1,x2,y2) returns the distance between (x1,y1) and (x2,y2). 

 Angle – Angle(x,y,z,w) calculates the angle generated between (x1,y1),(0,0),(x2,y2). 

 IsNull – IsNull(val) checks whether the given val equals null. Returns a Boolean value. 

PROTON EEP uses any of the following operators (Table 1). 
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Table 1: Operators in PROTON EEP 

Type Operator Example 

Mathematical +    -    /    * customerBuy.quantity + 5 

Comparison =   ==   !=   >   <   <=   >= customerRating != "gold" 

Boolean and   or   not   xor 

&   &&   |   ||   !   ^  true false 

customerOrigin = "USA" or 

customerLanguage = "English" 

If-then-else if <cond1> then Exp1 

elseif <cond2> then Exp2 

else exp3 

endif 

If customerRating = "gold" then 

customerRequest 

else 0 

endif 

Lexical ++ (concatenation) "Name: " ++ Trans.customerName 

 

EEP expressions can include operands of types Boolean, Datetime, Double, Integer, Numeric, String, or 

array of each of these simple types. 

3 Real-time event recognition and 
forecasting under uncertainty 

Proactive event driven computing deals with the inherent uncertainty in the event inputs, in the output 

events, or in both ([7][8],[9], [10], and [11]). 

In order to cope with uncertainty, PROTON has been extended both in the authoring tool and in the run-

time engine as described in the following Sections. Requirements are driven by the use cases as well as 

by the Decision Module, as the latter apply situations detected by the CEP module to conduct real-time 

decision making.  

3.1 Event definitions 
In general, there exist two methods to define the rule patterns for a CEP application: machine learning 

and experts. In the first, the patterns are learnt automatically by a computer program, while in the 

second, they are given by an external entity; usually a subject expert matter specialized in the domain. It 

is also possible to combine between these two methods. Currently, the event patterns for both use 

cases as described in this document and implemented in PROTON, have been given by the domain 

partners. It might be that the hybrid approach will be used in the scope of SPEEDD at a later phase, 
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when definitions automatically learnt will go through a manual refinement process in order to be 

compatible to PROTON’s definition file.  

3.2 Extending PROTON’s run-time engine  
We say that if an event is predicted or forecasted to occur in the future, it can be expressed by setting 

the event a future occurrence time with an optional supported distribution and a certainty value. This 

imposes fundamental extensions in PROTON’s Extendable Expression Parser (EEP) as described 

henceforth.  

3.2.1 New built-in attributes 

The event metadata in PROTON has been extended as follows: 

 Addition of the built-in double Certainty attribute that stores the certainty of this event. An 

event has a default certainty value equal to 1, while it can have any value between (0-1].  

 Support for distribution values (see next Section) of Occurrence time built-in attribute. 

3.2.2 New operands types 

The operands types have been extended to cope with distributions. Two types of distributions are 

supported: Continuous distribution and discrete distribution. Canonic forms of distribution have been 

implemented for each of these types. In the continuous case, there is a continuous function which its 

integral equals to 1. In the discrete case, it is a set of values with their associated probabilities where the 

sum of all probabilities is equal to 1.  

Furthermore for continuous distributions, we support the Sigmoid(a,b,x) function which returns 1/ ( 1 + 

e^(-a ( x - b ) ) ) (see  Section 3.4.3.) 

For discrete distributions, we currently support the following: 

 Bernoulli (p) – where p is the probability of success   

 Binomial (n, p) – where n is the number of trials and p is the probability of success  

 Uniform (list of numbers) – each number is associated with a probability equals to 1/number of 

numbers  

3.2.3 New built-in functions 

 CDF – CDF(d, alpha) – returns the cumulative distribution function of d (which is of  type 

distribution) at point alpha, which is the probability that d is smaller or equal to alpha. 

 Mean – Mean(d) – returns the expectation of the distribution d 

 PDF – PDF(d, x) – returns the probability density function of the distribution d at point x 

 Percentile – Percentile(d, alpha) – returns the smallest value x, for which CDF(d, x) is larger or 

equal to alpha 

 Var – Var(d) – returns the variance of the distribution d  

We also added the two following built-in functions for the sake of the Sigmoid function 
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 Power(a,x) - returns a^x for two doubles 

 Exp(x) - returns e^x 

As a result, the EPAs’ operators have been adjusted to deal with uncertain or probabilistic operands and 

expressions. Our two outstanding examples in our first implementations include TREND, COUNT, and 

ALL (see Sections 3.4 and 3.5).  

3.3 Extending PROTON’s authoring tool 
The authoring tool forms have been accommodated to support all above extensions. Figure 4 shows a 

screenshot from PROTON’s authoring tool showing the addition of the Certainty built-in attribute. 

 

Figure 4: PROTON 's screenshot showing the new certainty attribute 

3.4 Implementation of first EPN for the fraud detection use case 
The overarching aim of the CEP module in this use case is to detect a potential fraud incident. To this 

end, a first EPN has been created with the collaboration of the use case owner partner Feedzai with the 

goal of having something meaningful and representative, yet doable to be achieved in the first year of 

the project. The outcome is an EPN consisting of seven EPAs shown in Figure 5 and detailed in the 

following Sections. For the sake of simplicity we only show the EPAs and the events flow in the network. 

Dotted lines represent events, other than input events, that are either initiators (in yellow) or 

terminators (in red) of a context. The PROTON JSON definitions file that comprises this EPN is provided 

as part of the software deliverable that accompanies this report. 
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In the current EPN we want to fire situations in the following cases (for detailed descriptions of each EPA 

see Sections 3.4.2.1-3.4.2.7): 

 An attempt of withdrawing/paying of increasing amounts is carried out for a single card (EPA2, 

IncreasingAmounts). 

 Several attempts of using a wrong CVV  (Card Verification Value) for the same card are made 

(EPA5 or  CVVatack). 

 Increasing amounts of withdrawals/payments are carried out after a CVV attack occurs (EPA1 

and EPA6). 

 Multiple occurrences of a suspicious fraudulent card happen at the same ATM (EPA3 and EPA4) 

 There are two consecutive attempts of using the same card in differ locations (EPA7 or 

ClonedCard). 

 

 

Figure 5: Fraud use case initial EPN 

In the fraud use case we distinguish between two types of transactions: CP (Card is Present) and CNP 

(Card Not Present). For further information on the use cases please refer to D7.1 “User Requirements 

and Scenario Definitions”. The logic of the patterns is the same for the two types, unless explicitly 

mentioned (see EPA7 description in Section 3.4.2.7). What differs is the temporal time windows length 

(CNP is much faster so the temporal windows will be shorter). In the current EPN we implicitly apply the 

CP case, having relatively long temporal windows (a few minutes) and omitting the filtering or opening 

of contexts just for the CP case. Obviously, the full implementation should cover both cases with explicit 

filter expressions for each EPA. 
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3.4.1 Event types 

Eight event types have been defined that comprise the event inputs, outputs/derived, and situations as 

shown in Figure 5. For the sake of simplicity we only show the user-defined attributes or the event 

payload and not the metadata (refer to Section 2.2.1.). 

Although the names of concepts in can be determined freely by the application designer in PROTON, we 

use some naming conventions for the sake of clarity. We denote event types with capital letters. Built-

in/metadata attributes start with a capital letter, as well as payload attributes that hold operators values, 

while payload attributes start with a lower letter. Table 2 shows the event definitions for the fraud EPN. 

Note that the Transaction raw event includes more fields or attributes. We defined only the ones 

required for pattern detection in the current EPN implementation. When running in SPEEDD 

architecture, PROTON will ignore event attributes not specified in its JSON.  

Table 2: Initial EPN for the fraud use case 

Event name Transaction 

Payload card_pan; terminal_id; cvv_validation; amount_eur; acquirer_country; is cnp 

Event name IncreasingAmounts 

Payload card_pan; terminal_id; TrendCount 

Event name TrendAfterCount 

Payload card_pan; terminal_id; TrendCount 

Event name IncreasingAmountsFirst 

Payload card_pan; terminal_id; TrendCount 

Event name FraudAtATM 

Payload terminal_id 

Event name CountFraud 

Payload card_pan; TransactionsCount 

Event name Fraud 

Payload card_pan 

Event name SequenceFraud 

Payload card_pan 

3.4.2 Event processing agents  

Henceforth, we describe the EPAs in the following order: Event name; motivation; event recognition 

process (following Figure 2); contexts along with temporal context policy; and pattern policies. 

In the event recognition process we only show the steps that take place in the specific EPA, while the 

others are greyed. For the filtering step we show the filtering expression; for the matching step we 

denote the pattern variables; and for the derivation step we denote the values assignment and 

calculations. Please note that for the sake of simplicity we only show the assignments that are not copy 

of values (all other derived event attributes values are copied from the input events). For attributes, we 

just denote their names without the prefix of ‘attribute_name.’ 
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In our initial implementation we use the Sigmoid probabilistic function to calculate the probability of the 

derived event. The Sigmoid function has been selected since it fits to situations that exhibit a 

progression from small beginnings that accelerate over time. A sigmoid curve is produced by a 

mathematical function having an "S" shape [12]. Of course, other parameters and functions might be 

applicable as well and are one of the topics for further testing in year two and three of the project. A 

Sigmoid function receives three parameters (a,b,x) and returns 1/ ( 1 + e^(-a ( x - b ) ) ). The patterns 

have been tested with several parameters and the ones shown in the figures, have been chosen to run 

the input events set. 

3.4.2.1 EPA1: Trend 

Motivation: Check for consecutive transactions (at least two) with increasing amounts. The monitoring 

of the pattern starts only after a situation of CountFraud is detected. The same EPA as EPA2, except that 

the derived event serves as input for EPA6 and its context is initialized by the CountFraud event and not 

Transaction. 

Event recognition process: 

 

Figure 6: Event recognition process for Trend EPA 

trendNumber and trend.count are built-in TREND variables that denote the minimal number of input 

events required in order to satisfy the pattern and the actual number correspondingly. 

Pattern policies: 

Evaluation Cardinality Repeated Consumption 

IMMEDIATE UNRESTRICTED FIRST REUSE 

Context: 

Segmentation: by card_pan 

Initiator policy: IGNORE 

Meaning: A temporal window of 5 min is opened, once a CountFraud event is derived (see EPA5). In this 

elapsed time we check for a TREND pattern over the amounts in the transactions per a single card. 

(amount_eur,
trendNumber>1)

Event Processing Agent
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within 
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deriving Certainty:Sigmoid(1,6,trend.count)
TrendCount:trend.count

TrendAfterCount(increasing) 
TREND
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According to the pattern policies (see table above), we can derive more than one event (with larger 

values in the certainty attribute) if the TREND pattern is satisfies. After 5 min the temporal window 

closes. 

 

Figure 7: Context for Trend EPA 

3.4.2.2 EPA2: IncreasingAmounts 

Motivation: Check for consecutive transactions (at least two) with increasing amounts that can hint to a 

possible fraud attempt. 

Event recognition process: 

 

Figure 8: Event recognition process for IncreasingAmounts EPA 

Pattern policies: 

Evaluation Cardinality Repeated Consumption 

IMMEDIATE UNRESTRICTED FIRST REUSE 

Context: 

Segmentation: by card_pan AND terminal_id 

Initiator policy: IGNORE 

CountFraud + 5 min

Transaction

TrendAfterCount

TrendAfterCount

(amount_eur,
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Event Processing Agent

Transaction
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TREND

deriving Certainty:Sigmoid(1,6,trend.count)
TrendCount:trend.count

IncrasingAmounts
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Meaning: A temporal window of 5 min is opened with the arrival of a first Transaction event. In this 

elapsed time we check for a TREND pattern over the amounts in the transactions per a single card and a 

single ATM. As in the previous case, we derive an event as it happens during the time window. 

 

Figure 9: Context for IncreasingAmounts EPA 

3.4.2.3 EPA3: IncreasingAmountsCardIndication 

Motivation: The same as before, but this EPA’s derived event is input to EPA4 and serves to eliminate 

multiple occurrences of a single card number and send a suspicious fraudulent card only once (the last 

one) to EPA4 which tests whether there are multiple credit cards frauds at the same ATM. 

Event recognition process: 

 

Figure 10: Event recognition process for IncreasingAmountsCardIndication EPA 

Pattern policies: 

Evaluation Cardinality Repeated Consumption 

DEFERRED UNRESTRICTED FIRST REUSE 

Context: 

Segmentation: by card_pan AND terminal_id  

Initiator policy: IGNORE 
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Meaning: A temporal window of 5 min is opened with the arrival of a first Transaction event. In this 

elapsed time we check for a TREND pattern over the amounts in the transactions per a single card and a 

single ATM. In this case, we derive a single event at the end of the window if the TREND pattern is 

satisfied (as per the deferred policy) and with the most updated trend.count at the moment of 

derivation 

 

Figure 11: Context for IncreasingAmountsCardIndication EPA 

3.4.2.4 EPA4: FraudAtATM 

Motivation: Checking for suspicious ATMs. We are looking for at least two different cards with 

increasing amounts (a suspicious card) in a single ATM.  

Event recognition process: 

 

Figure 12: Event recognition process for FraudAtATM EPA 

Count sums the number of the input event occurrences, while count is the assertion value for the 

COUNT pattern. We are detecting the pattern once the probability that we have at least two instances 

of IncreasingAmounts attacks on this terminal is more than 0.8.  Since the IncreasingAmounts events are 

probabilistic, the assertion should take this into account in the counting calculation.  The more input 

events we have (more IncreasingAmounts with different cards at this terminal), the higher the Certainty 

value of FraudAtATM derived event. 
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Pattern policies: 

Evaluation Cardinality Repeated Consumption 

IMMEDIATE UNRESTRICTED FIRST REUSE 

Context: 

Segmentation: by terminal_id 

Initiator policy: IGNORE 

Meaning: A temporal window of 5 min is opened with the arrival of a first 

IncreasingAmountsCardIndication event. In this elapsed time we check for a COUNT pattern per a single 

ATM. As in the previous case, we derive an event as it happens during the time window. Note, that since 

the COUNT pattern is probabilistic we might encounter more than two input events before deriving an 

output event. 

 

 

 

Figure 13: Context for FraudAtATM EPA 

3.4.2.5 EPA5: Count (CVV attack) 

Motivation: CVV attack case, a fraud is suspected whenever a large number of attempts (>3) using a 

card with wrong CVVs are made. 
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Event recognition process: 

 

Figure 14: Event recognition process for Count (CVV attack) EPA 

Pattern policies: 

Evaluation Cardinality Repeated Consumption 

DEFERRED UNRESTRICTED FIRST REUSE 

Context: 

Segmentation: by card_pan 

Initiator policy: IGNORE 

Meaning: A short temporal window of 2 min is opened with the arrival of a first Transaction event per 

card. At the end of the window the COUNT evaluation is made and a derived event is emitted if the 

pattern is satisfied. 

 

Figure 15: Context for Count (CVV attack) EPA 

3.4.2.6 EPA6: CombinedCountTrendFraud (The TREND after COUNT case) 

Motivation: The TREND after COUNT case, that is, we look for a case that an attempt for a CVV attack 

has been made preceding increasing amounts (TREND pattern). In other words, a “correct CVV” was 

found after several attempts that led to consecutive increasing amounts in the transactions. We have 

this EPA in addition to EPA1 so that we can combine different policies and derive events with payload 
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attributes generated from events in the matching set (EPA1 is a TREND operator with no access to the 

matching set events, see Section 3.5.53.4.4). 

Event recognition process: 

 

Figure 16: Event recognition process for CombinedCountTrendFraud (the TREND after COUNT case) EPA 

Pattern policies: 

Evaluation Cardinality Repeated Consumption 

IMMEDIATE UNRESTRICTED LAST REUSE 

Context: 

Segmentation: by card_pan 

Initiator policy: IGNORE 

Meaning: A temporal window of 5 min is opened with the arrival of a first CountFraud event per card. 

During the time window, we look for pairs of a CountFraud and TrendAfterCount and emit a Fraud event 

whenever the pattern is satisfied.  

 

Figure 17: Context for CombinedCountTrendFraud (the TREND after COUNT case) EPA 
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3.4.2.7 EPA7: Sequence (Cloned Card) 

Motivation: The cloned card case (for CP only), we check that two “close transactions” (a few minutes 

apart) cannot take place at two different physical locations (a location is represented by a country code, 

therefore, whenever there are two different locations, these are physically distant). T1 and T2 are 

aliases of the event type Transaction. 

Event recognition process: 

 

Figure 18: Event recognition process for Sequence (Cloned Card) EPA 

Note that the SequenceFraud derived event has a certainty of 1 (in this case the fraud indication is of 

100%) and therefore the Certainty attribute is not shown in the derivation step (the default is “1”). 

Pattern policies: 

Evaluation Cardinality Repeated Consumption 

IMMEDIATE UNRESTRICTED T1=FIRST; 
T2=OVERRIDE 

CONSUME 

Context: 

Segmentation: by card_pan 

Initiator policy: IGNORE 

Meaning: A temporal window of 5 min is opened with the arrival of a first Transaction event per card. 

During the time window, we look for pairs such as the location of the first transaction in the pair differs 

from the second transaction in the pair. In these cases, a SequenceFraud event is emitted. The 

Transaction events that participate in the pattern matching are those that belong to the CP case. The 

policies defined assure that every two consecutive events with different locations are checked in the 

pattern. 
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Figure 19: Context for Sequence (Cloned Card) EPA 

3.4.3 Uncertainty  

In our implemented EPN and first fraud use case event driven application we deal with two types of 

uncertainties: uncertainty in the derived event since the fact that a pattern is satisfied doesn’t implicate 

a fraudulent activity with 100% assurance; and uncertainty in the input events. The latter stems from 

the fact that the input events are themselves derived event from the first type, thus the uncertainty is 

propagated forward.   

3.4.3.1 Uncertainty in the derived event 

In this case, the input events are certain (a Transaction event happens) but the derived event is not 

certain (e.g., the fact that we have 4 Transactions with increasing amount of money doesn’t necessarily 

imply a fraud). EPA1, EPA2, EPA3, and EPA5 belong to this category of cases. 

In this case we applied the Sigmoid function as aforementioned to derive the certainty of the derived 

event. Different values have been tested and the ones showed in the EPAs figures have been selected 

for the specific EPAs. For example, for EPA5 the values chosen are a:1 and b:9, for EPA2 a:1 and b:6 

(Figure 20). 

 

Figure 20: Sigmoid function results for EPA4 (COUNT) and EPA1 (TREND) 
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Transaction
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COUNT TREND
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Henceforth we show the probability calculations for EPA6, the Trend after Count case (Equation 1): 

The probability of a fraudulent event (F) given that a COUNT pattern (C) is satisfied (EPA5) is: P (F | C=c) 

The probability of a fraudulent event given a TREND pattern (T) is satisfied (EPA1) is: P (F | T=tr) 

The probability of a fraudulent event given first a COUNT and then a TREND (these are two independent 

variables) using Bayes formula: 

𝑃(𝐹 |𝐶=𝑐 ∩𝑇=𝑡𝑟) = 𝑃 (𝐹 ∩𝐶=𝑐 ∩𝑇=𝑡𝑟) / 𝑃 (𝐶=𝑐 ∩𝑇=𝑡𝑟) = 

𝑃(𝐶=𝑐│𝐹)∙𝑃(𝑇=𝑡𝑟│𝐹)∙𝑃(𝐹) / 𝑃(𝐶=𝑐 ∩𝑇=𝑡𝑟) = 𝑃 (𝐹|𝐶=𝑐)∙𝑃(𝐹|𝑇=𝑡𝑟) / 𝑃(𝐹)  

Equation 1: Calculation of the probability for EPA6 (Trend after Count) 

whereas we assume P(F) is given (in our tests, P(F) = 0.01) 

3.4.3.2 Uncertainty in the input event(s) 

When the input events contain uncertainty, this is propagated to the pattern matching step which 

becomes uncertain. EPAs 4 and 6 belong to this category. 

For EPA4 we use a Cumulative Distribution Function (CDF) to calculate the certainty that a COUNT is 

detected. In EPA6 the ALL certainty is the multiplication of the certainty of the input events, since they 

are independent.  

3.4.4 Summary 

The first EPN for the fraud detection use case (see Figure 5) includes seven EPAs, one raw event, five 

situations (four probabilistic and one deterministic). Our implementation relies on PROTON’s building 

blocks and capabilities and it might be possible that the same application will look differently when 

implemented in another CEP engine that uses different building blocks. For example, we might 

sometimes have same patterns that differ in context or policies and therefore we duplicate them as in 

the case of EPA1 and EPA2 that the pattern is the same (TREND) but their context is different. Another 

example is the TREND operator or pattern, which might not exist in another CEP engine. In this case, a 

workaround using existing building blocks or primitives needs to be established. Still, there are some 

constraints and limitations in PROTON’s current language and implementation that dictated some of our 

design and implementation choices. The most noticeable example is the implementation of EPA6 which 

seems redundant. As a matter of fact, the most intuitive way to implement the “TREND after COUNT” 

EPA was just having EPA1 coming after EPA5. However, when the TREND operator (as in all operators of 

type aggregation) is satisfied, a derived event is emitted without the possibility to access the matching 

set events.  

3.5 Implementation of first EPN for the traffic management use case 
The overarching aim of the CEP module in this use case is to detect congestions or potential congestion 

situations in the Grenoble highway. To this end, a first EPN has been created with the collaboration of 

the use case owner partner CNRS with the goal of having something meaningful and representative, yet 
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doable to be achieved in the first year of the project. The outcome is an EPN consisting of seven EPAs 

shown in Figure 21 and detailed in the following Sections. For the sake of simplicity we only show the 

EPAs and the events flow in the network. Dotted lines represent events, other than input events, that 

are either initiators (in yellow) or terminators (in red) of a context.  The PROTON JSON definitions file 

that comprises this EPN is provided as part of the software deliverable that accompanies this report. For 

further information on the use cases please refer to D7.1 “User Requirements and Scenario Definitions”.  

In the current EPN we want to fire situations in the following cases (for detailed descriptions of each EPA 

see Sections 3.5.3.1-3.5.3.7) 

 A Congestion (EPA2) in a specific location is building-up. 

 A ClearCongestion (EPA3) at a specific location is identified. 

 A PredictedCongestion, that is, a forecasted congestion is identified at a specific location (EPA4 

and EPA5). 

 Calculations on sensor readings are emitted to be consumed by the decision making module 

(EPA6 and EPA7) 

Note that for all the detections apart of EPA6, average measurements are taken (EPA1). 

 

Figure 21: Traffic management use case initial EPN 

3.5.1 Calculations of congestion, clear congestion, and “almost congestion” situations 

We differentiate among three situations at a specific location using two parameters: density and speed. 

A Congestion (shown in red in Figure 22) exists if the density in a specific location is above a certain 

given value (density_threshold1) and the speed is below a certain given value (speed_threshold1). On 

the other hand, a congestion is over (ClearCongestion, shown in green), whenever the density is below a 
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certain given value (density_threshold2) and the speed is above a certain given value (speed_threshold2). 

We emit a probabilistic PredictedCongestion situation (in yellow) in between the Congestion and the 

ClearCongestion thresholds. Note that for the speed we added a new threshold (speed_threshold3) in 

order to narrow the limits for a PredictedSituation, but of course, any value between speed_threshold1 

and speed_threshold2, can be selected. 

 

Figure 22: Illustrative diagram of the different traffic situations 

Two main assumptions have been made: 

 Density is naively calculated as flow divided by speed. 

 Density values are computed first per lane and then they are aggregated to compute the 

average density value per location. 

 Calculations are made for a single location or sensor and not for a segment or cell (distance 

between two consecutive locations).  

Future versions of this application will take into account more sophisticated density calculations as well 

as segments. 

3.5.2 Event types 

Eight event types have been defined that comprise the event inputs, outputs/derived, and situations as 

shown in Figure 21. For the sake of simplicity we only show the user-defined attributes or the event 

payload and not the metadata (refer to Section 2.2.1.).  

Although the names of concepts in can be determined freely by the application designer in PROTON, we 

use some naming conventions for the sake of clarity. We denote event types with capital letters. Built-

in/metadata attributes start with a capital letter, as well as payload attributes that hold operators values, 

while payload attributes start with a lower letter. Table 3 shows the event definitions for the traffic 

management EPN. Note that the problem_id attribute is not part of the raw event payload and is 

intended for monitoring reasons by the decision module of the SPEEDD prototype. This module 

correlates decisions made and their effect by this attribute. At this stage, we assign the location_id value 

to the problem_id at the derivation step, but more complex expressions can be applied. 

density_threshold2 density_threshold1

CongestionClearCongestion
Predicted 

Congestion

speed_threshold1 speed_threshold2

ClearCongestionCongestion
Predicted 

Congestion

speed_threshold3
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Note that the AggregatedSensorRead raw event includes more fields or attributes. We defined only the 

ones required for pattern detection in the current EPN implementation. When running in SPEEDD 

architecture, PROTON will ignore event attributes not specified in its JSON.  

Table 3: Initial EPN for the traffic management use case 

Event name AggregatedSensorRead 

Payload location, lane, occupancy, vehicles, average_speed 

Event name Congestion 

Payload location, average_density, problem_id 

Event name PredictedCongestion 

Payload location, average_density, problem_id 

Event name ClearCongestion 

Payload location, problem_id 

Event name OnRampFlow 

Payload location, average_flow, average_speed, average_density 

Event name AverageDensityAndSpeedPerLocation 

Payload location, average_flow, average_density, average_ speed 

Event name 2minsAverageDensityAndSpeedPerLocation 

Payload location, average_flow, average_speed, average_density 

Event name PredictedTrend 

Payload location, problem_id 

3.5.3 Event processing agents 

Henceforth, we describe the EPAs in the following order: Event name; motivation; event recognition 

process (following Figure 2); contexts along with temporal context policy; and pattern policies. 

In the event recognition process we only show the steps that take place in the specific EPA, while the 

others are greyed. For the filtering step we show the filtering expression; for the matching step we 

denote the pattern variables; and for the derivation step we denote the values assignment and 

calculations. Please note that for the sake of simplicity we only show the assignments that are not copy 

of values (all other derived event attributes values are copied from the input events). For attributes, we 

just denote their names without the prefix of ‘attribute_name.’ 

3.5.3.1 EPA1: AvgDensityAndSpeedPerLocation 

Motivation: This EPA calculates averages of speed and vehicles to derive an average density over all the 

lanes in a certain location except for on-ramp lanes, which are treated differently (see D8.1 and D5.1 for 

further details). 
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Event recognition process: 

 

Figure 23: Event recognition process for AvgDensityAndSpeedPerLocation EPA 

AverageSpeed and AverageFlow are computed variables of the AVG pattern.  

Pattern policies: 

Evaluation Cardinality Repeated Consumption 

DEFERRED SINGLE FIRST CONSUME 

Context: 

Segmentation: by location_id 

Initiator policy: IGNORE 

Meaning: For each batch of raw events (AggregatedSensorRead) at each location, there is a derived 

event for the average density and speed. As there is one batch every 15 sec, the initiator policy doesn’t 

play a role in this case. 

 

Figure 24: Context for AvgDensityAndSpeedPerLocation EPA 
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3.5.3.2 EPA2: Congestion 

Motivation: To derive a congestion alert whenever the average density and speed are above and under 

specific given thresholds (labeled by 1).  In this case the derived event has a probabilistic value of 1, 

since the congestion detected is already taking place. In our initial tests we used 

density_threshold1:0.95 and speed_threshold1:45. 

Event recognition process: 

 

Figure 25: Event recognition process for Congestion EPA 

Pattern policies: 

Evaluation Cardinality Repeated Consumption 

IMMEDIATE SINGLE FIRST CONSUME 

Context: 

Segmentation: by location_id 

Initiator policy: IGNORE 

Meaning: We open a single context for a location in order to detect an actual congestion. The context is 

closed with the ClearCongestion event, i.e., the congestion passed.  

 

Figure 26: Event recognition process for Congestion EPA 
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3.5.3.3 EPA3: ClearCongestion 

Motivation: A derived event is emitted whenever the flow is perceived as “normal”, meaning the 

density and speed thresholds are in the “normal range”. In our initial tests we used 

density_threshold2:0.80 and speed_threshold2:70. 

Event recognition process: 

 

Figure 27: Event recognition process for ClearCongestion EPA 

Pattern policies: 

Evaluation Cardinality Repeated Consumption 

IMMEDIATE SINGLE FIRST CONSUME 

Context: 

Segmentation: by location_id 

Initiator policy: IGNORE 

Meaning: We open a single context for a location in order to detect when an occurring congestion or 

predicted congestion goes away. To this end, the context is opened with either the Congestion or 

PredictedCongestion events (the first that comes) and is closed when a ClearCongestion is detected (the 

derived event also closes the open context).  
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deriving
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Figure 28: Context for ClearCongestion EPA 

3.5.3.4 EPA4: PredictedTrend 

Motivation: The CEP run-time engine will derive a PredictedTrend event (input to the 

PredictedCongestion EPA) whenever it detects an increase in the density values of at least 6 consecutive 

input events. The density values are still in the “normal range” so that neither a Congestion nor a 

ClearCongestion are detected. We used the value of 51 for our tests for speed_threshold3.  

Event recognition process: 

 

Figure 29: Event recognition process for PredictedTrend EPA 

Pattern policies: 

Evaluation Cardinality Repeated Consumption 

IMMEDIATE UNRESTRICTED FIRST REUSE 

Context: 

Segmentation: by location_id 

Initiator policy: IGNORE 

Meaning: We open a single context for a location in order to detect an increasing TREND pattern. To this 

end, the context is opened with the first input event that comes and is closed when either a Congestion 

or ClearCongestion is detected for the same location. As we use the IMMEDIATE and UNRESTRICTED 
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policies, we derive a PredictedTrend event for each TREND encountered; with increasing Certainty value 

if the buildup continues (density continues to rise and speed continues to decrease). 

 

Figure 30: Context for PredictedTrend EPA 

3.5.3.5 EPA5: PredictedCongestion 

Motivation: The goal is to derive a PredictedCongestion event, that is, we believe there is a chance that 

a congestion will take place in the near future. We use the TREND pattern from EPA4 as input and derive 

an event that gets the uncertainty of the last PredictedTrend in the pair of input events (see repeated 

policy below). We have this EPA in addition to EPA4 so that we can combine different policies and derive 

events with payload attributes generated from events in the matching set (EPA4 is a TREND operator 

with no access to the matching set events, see 3.5.5). 

Event recognition process: 

 

Figure 31: Event recognition process for PredictedCongestion EPA 

Pattern policies: 
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Evaluation Cardinality Repeated Consumption 

IMMEDIATE UNRESTRICTED e1: OVERRIDE  
e2: LAST  

e1: REUSE 
e2: CONSUME 

AverageDensityAndSpeedPerLocation

PredictedTrend

ClearCongestion

Congestion

PredictedTrend

Event Processing Agent

within 
context

filtering

deriving

AverageDensityAnd
SpeedPerLocation;

PredictedTrend
ALL PredictedCongestion

Certainty:PredictedTrend.Certainty



33 
 

                                          D3.1 First version of event recognition and forecasting technology 

 

 

Context: 

Segmentation: by location_id 

Initiator policy: IGNORE 

Meaning: The context is opened with the first AverageDensityAndSpeedPerLocation input event that 

comes and is closed when either a Congestion or ClearCongestion is detected for the same location. 

Whenever a PredictedTrend input event comes, a PredictedCongestion derived event is emitted. As we 

use the IMMEDIATE and UNRESTRICTED policies, we can derive more than one event. We use the LAST 

policy, so that the last PredictedTrend event is used for the ALL pattern (assuming that the probabilities 

are going up as we have more increasing densities). 

 

Figure 32: Context for PredictedCongestion EPA 

3.5.3.6 EPA6: AvgOnRamp 

Motivation: To derive average values of on-ramp lanes every two minutes for the decision module. 

Event recognition process: 

 

Figure 33: Event recognition process for AvgOnRamp EPA 
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Pattern policies: 

Evaluation Cardinality Repeated Consumption 

DEFERRED SINGLE FIRST CONSUME 

Context: 

Segmentation: by location_id 

Initiator policy: ADD 

Meaning: In each location, for each input event (sliding/overlapping temporal windows) we open a 

temporal context and perform average calculations. The temporal contexts are closed after two minutes. 

 

Figure 34: Event recognition process for AvgOnRamp EPA 

3.5.3.7 EPA7: AvgAggregationOverTime 

Motivation: To derive average values for all lanes every two minutes for the decision module. 

Event recognition process: 

 

Figure 35: Event recognition process for AvgAggregationOverTime EPA 
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Evaluation Cardinality Repeated Consumption 

DEFERRED SINGLE FIRST CONSUME 

Context: 

Segmentation: by location_id 

Initiator policy: ADD 

Meaning: In each location, for each input event (sliding/overlapping temporal windows) we open a 

temporal context and perform average calculations. The temporal contexts are closed after two minutes. 

 

Figure 36: Event recognition process for AvgAggregationOverTime EPA 

3.5.4 Uncertainty  

Similar to the fraud use case, our implemented EPN and first traffic management use case event driven 

application copes with uncertainty that stems from the input events and from the derived events.  

Note that the derived events in EPAs 1, 2, 3, 6, and 7 have a certainty value equals to 1. EPAs 1, 6, and 7 

are calculations on input events required by the decision module. EPA2 measures a congestion situation 

while is already taking place, while EPA3 detects that the congestion is over, again when it already takes 

place.  

3.5.4.1 Uncertainty in the derived event 

In this case, the input events are certain (a sensor reading event happens) but the derived event is not 

certain (e.g., the fact that we have 5 sensor readings that show an increase in the density, doesn’t 

necessarily imply there will be a traffic congestion for sure). EPA4 belongs to this category of cases. As in 

the fraud use case, we apply the Sigmoid function to calculate the probability of the occurrence of a 

derived event. 

3.5.4.2 Uncertainty in the input event(s) 

When the input events contain uncertainty then the pattern becomes uncertain. EPA5 belongs to this 

category. In EPA5 the uncertainty value in the input event is propagated to the derived event in the ALL 

pattern. 
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3.5.5 Summary 

The first EPN for the traffic management use case (see Figure 21) includes seven EPAs, one raw event, 

five situations (one probabilistic and four deterministic). As the same as for the fraud detection, our 

implementation relies on PROTON’s building blocks and capabilities and it might be possible that the 

same application will look differently when implemented in another CEP engine that uses different 

building blocks.  There are also constraints that PROTON programmatic language and implementation 

imposes when designing and building a new event-driven application. As in the case of the fraud 

detection EPN, we need EPA5 so we can derive an event that includes payload values of the TREND 

operator matching set (EPA4).  

4 Performance evaluation 
In addition to functional tests that assured the results received are in accordance to the expected 

outputs in terms of correctness and functionality, tests have been run to assess the throughput and 

latency of the two EPNs for our two use cases applications. 

The machine used for the tests purposes was a Lenovo Thinkpad with the following characteristics: 

 

The tests were performed on Oracle JRE v 1.6.0_39, with the heap space allocated as 40MB initially and 

allowed to grow to max 1 GB, with a maximum PermGen size of 128MB. 

The tests were carried out under the following constraints which influenced (and eventually 

deteriorated) the performance: 

 The Thinkpad that served for the tests also run additional heavy load programs in parallel to the 

tests (e.g., IBM Lotus Notes), due to constraints of the infrastructure for performance 

measurement. 

 The raw events and derived events were read from an input file and were written to an output 

file on the same machine, while the event processing application was running, and at the same 

JVM process Massive I/O and use of process memory can significantly affect the performance, 

especially during throughput testing. 

 Maximum CPU load reached during testing was 40%. We believe that tuning the configuration 

so that CPU reaches the max load, while playing with CPU affinity to allow priority for the event 

processing and to decrease amount of preempts, can significantly improve performance. 

 Lack of system warm-up. Performing  warm-up  for JVM compiler optimization procedures will 

give results closer to real-life performance. 
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Considering all of the above, we treat the current performance results as an initial indication of a lowest 

bound for performance metrics for the CEP component. We believe we will get more accurate metrics 

using suitable infrastructure and system tuning, and running the CEP tool in a distributed manner on top 

of STORM. 

The following Sections describe our experiments and results. 

4.1 Throughput 

4.1.1 Datasets 

The throughput was calculated using a dataset consisting of 10,000 real data raw events. For the traffic 

management use case we used the September 2014 input and for the fraud use case the anonymized 

data, both provided by the use cases partner. 

4.1.2 Throughput results for the fraud detection use case 

In order to test throughput the entire EPN has been applied (see Figure 5) with maximum load. We 

denote by start_time the detection time of the first input event and by end_time the detection time of 

the last derived event.  We calculated the time between the injection of the first raw event and the 

derivation of the last raw event. Therefore, the throughput measures the amount of events processed 

through the entire EPN divided by (start_time – end_time). 

Ten runs of 10,000 raw events each were carried out. The mean throughput over these runs was 1.948 

milliseconds per event, i.e., 513 events per second.  

4.1.3 Throughput results for traffic management use case 

In order to test throughput the entire EPN has been applied (see Figure 21) with maximum load. We 

denote by start_time the detection time of the first input event and by end_time the detection time of 

the last derived event.  We calculated the time between the injection of the first raw event and the 

derivation of the last raw event. Therefore, the throughput measures the amount of events processed 

through the entire EPN divided by (start_time – end_time). 

Ten runs of 10,000 raw events each were carried out. The mean throughput over these runs was 1.73 

milliseconds per event, i.e., 575 events per second.  

4.2 Latency 

4.2.1 Datasets 

The latency was measured with simulated datasets, each 10,000 raw events. We haven’t used real-data 

since we tested specific patterns and needed to be sure that these are represented enough in the 

datasets. For each use case, we selected one “predictive pattern” (i.e., the derived event is probabilistic 

or has a certainty value < 1) and one “detection pattern”, i.e., the derived event has a certainty value = 1. 

When discussing predictive patterns, we can also relate to the predictive horizon, meaning, to “how far” 

in the future the predictive event can hold.   
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4.2.2 Latency results for the fraud detection use case 

4.2.2.1 First case: IncreasingAmounts 

In this scenario, EPA2 (Increasing Amounts) latency has been tested (see Figure 5). This EPA tests for a 

TREND pattern of at least two consecutive Transactions with increasing amounts. The latency was 

calculated as the elapsed time between the detection time of the last Transaction event in the matching 

set (at the moment the input event is injected into CEP engine) and the detection time of the 

IncreasingAmounts derived event. 

An overall of 10,000 events have been processed that included around the 70% of the pattern 

satisfaction. 

The forecasting horizon in this case depends mainly on the fraud given probability (assumed to be 0.01) 

and the TREND threshold (amount of events in the matching set). These can be configured to better fit 

the real data. 

The latency mean found was: 110.8 milliseconds and the 90% percentile 118 milliseconds. 

4.2.2.2 Second case: SequenceFraud 

In this scenario, EPA7 (Cloned Card) latency has been tested (see Figure 5). This EPA detects two 

consecutive Transactions with the same credit card (present) at different locations. The latency is 

calculated from the raw event injection until the sequence pattern detection.  

Note that the performance of a SEQUENCE pattern is heavily influenced by the policies undertaken, 

specially the repeated policy (see Section 2.1.4), with worst performance for the every policy which tests 

all possible combinations of the participating events. In our case, we apply the first and override options 

meaning we have a 1:1 match and no iteration over possible other combinations.  

The input file comprises 10,000 raw events, with around 10% of events that satisfy the SEQUENCE 

pattern.   

The latency mean found was: 112 milliseconds and the 90% percentile 125 milliseconds. 

4.2.3 Latency results for traffic management use case 

4.2.3.1 First case: PredictedTrend 

In this scenario, two EPAs have been tested (see Figure 21), EPA1 (AvgDensityAndSpeedPerLocation) and 

EPA4 (Predicted Trend), that is, we derive the PredictedTrend event with a probability for a congestion. 

EPA1 receives the raw events (AggregatedSensorRead) as input events and emit the average measures 

(AverageDensityAndSpeedPerLocation) used then by EPA4 for the TREND pattern (at least five instances 

with increasing density values). The context window was shortened to 3 min for practicality. Our data 

set included around a 1% of TREND detection. 

Latency was measured from the moment the trend situation happens (5th occurrence of 

AverageDensityAndSpeedPerLocation with increasing density enters the system) until PredictedTrend is 
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derived.  Therefore, the detection time of the AverageDensityAndSpeedPerLocation   event was 

subtracted from the detection time of the PredictedTrend event.  

An overall of 10,000 raw events have been processed. 

Regarding the forecasting horizon, the PredictedCongestion event is fired after 5 successive average 

calculations with increasing density. Each average calculation is based on input readings every 15 

seconds. We consider a traffic buildup from the moment events start entering the matching set. In our 

EPN, it takes 75 seconds to detect and forecast a building congestion (from traffic buildup until 

congestion). The amount of time between a prediction and an actual congestion heavily depends on the 

thresholds values for the buildup. Note that these are configurable. 

The latency mean found was: 110.5 milliseconds and the 90% percentile 110 milliseconds. 

4.2.3.2 Second case: Congestion and ClearCongestion 

In the second scenario, two EPAs have been tested (see Figure 21), EPA1 

(AvgDensityAndSpeedPerLocation), EPA2 (Congestion) and EPA3 (ClearCongestion). In this scenario, the 

AggregatedSensorRead raw events pass through EPA1 in which averages are calculated and from which 

AverageDensityAndSpeedPerLocation derived events serve as input for detect either a clearance or an 

appearance of congestion. The dataset contained 10,000 raw events. 

The latency is measured as the elapsed time between the detection time of 

AverageDensityAndSpeedPerLocation to the detection time of Congestion and ClearCongestion events. 

The percentage of detection within the dataset was around 5%. 

The latency mean found was 101.253 milliseconds and the 90% percentile 102 milliseconds. 

4.3 Performance evaluation results summary 
Performance evaluation has been made on two criteria: throughput and latency. These have been 

measured on partial and complete current EPNs of the two use cases with simulated as well as with real 

raw events. 

Our main objective in the project is to improve the current situation with the use of SPEEDD technology. 

In the scope of this first deliverable related to the CEP component, we have just made a first step 

towards this direction. Any attempt to generalize over the results so far will be somehow missing the 

main goal and impractical due to several reasons:  

 The EPNs are still initial and partial, not covering all possible patterns. The reality that serves as 

benchmark is much more complex and contains more patterns that our component will simply 

miss and not detect at this stage.  

 Improvements stem from the overall system, especially from the interaction and synergy 

between the CEP and decision making components. Evaluation in isolation might hurt the 

potential overall performance achieved.  
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 In the fraud detection use case, the Feedzai partner owns a dedicated operational system to 

detect fraud. Applying a CEP generic research prototype to “compete” with it in terms of 

accuracy of results (false positives and false negatives) seems impractical. The benefit should be 

associated with the fact that potential fraudulent transactions can be detected beforehand. 

 On the other hand, in the traffic management use case, there is no real time operational system 

at all; therefore any improvement will be evident. 

Still, we believe that the results so far can give an indication of what can be achieved and be a lower 

bound of performance. As aforementioned, the tests have been carried out on a single machine running 

other heavy processes in parallel. The results (both the throughput and the latency) can be significantly 

improved if running on a machine with a clean state, multiple cores, and when tuning for performance. 

In addition, the throughput can be further beneficiary when running on a distributed environment like 

STORM with N nodes (refer to D3.1). Assuming the contexts distributions are more or less uniform, the 

throughput can be approximately the throughput on a single machine*N (minus communication and 

infrastructure overheads) 

5 Summary and future steps 
In this document, we present the first version of the complex event module under uncertainty in 

SPEEDD. The report comprises the extensions introduced so far in the event processing component 

tooling to cope with uncertainty driven by both the use cases and the decision module requirements. A 

detailed description of the first event driven applications for the two use cases in the project is given. 

We also show preliminary evaluation results of the proposed technologies. 

The inclusion of uncertainty aspects, mainly manifested in the run-time module, impacts all levels of the 

architecture and logic of an event processing engine. Even at this stage, the current implemented EPNs 

possess a high level of sophistication and complexity. In order to cope with uncertainty, the following 

extensions have been implemented in PROTON: 

• New built-in attributes have been added (Certainty) 

• Operands types have been extended to support distributions (e.g., Sigmoid) 

• Additional built-in functions have been added (e.g., CDF) 

• Operators have been extended to support events with probabilistic attribute values (e.g., 

COUNT and TREND) 

Important to note, these are not ad-hoc extensions to support specific use cases requirements, but 

generic building blocks that make PROTON first-of-a-kind CEP engine capable to deal with uncertainty 

and to derive forecasted events. 
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In the next months we plan to continue extending the support for uncertainty driven by the use cases 

requirements. This will be reflected in new patterns and the presence of uncertainty in the input or data 

sets (e.g., missing or erroneous attribute values). Advanced event processing networks will reflect: 

• The addition of new patterns 

• The fine tuning of the entire networks including different thresholds values 

• Other probabilistic functions in addition to Sigmoid. 

• In the traffic management use case, taking into account the following aspects: 

o Noise in the input data, e.g., taking into account the “-1” that are currently filtered out 

(the -1 indicates no speed value calculation is available). 

o Calculations per cell, not per sensor/location; on-ramp lanes;  

o Derivation of more fine-tuned events, such as “heavy/medium/low” congestion. 

o More sophisticated formulae for density. 

o More sophisticated values for problem_id instead of location_id 

Our next reports at M22 and M32 will present the advances made in the coming months. 
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